Retrovirology | |
Regulation of host gene expression by HIV-1 TAR microRNAs | |
Patrick Provost1  John J Rossi2  John C Burnett2  Isabelle Plante1  Lise-Andrée Gobeil1  Kevin Létourneau1  Jimmy Vigneault-Edwards1  Dominique L Ouellet1  | |
[1] Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada;Department of Molecular and Cellular Biology, Beckman Research Institute at City of Hope, 1500 E Duarte Road, Duarte, CA 91010, USA | |
关键词: Nucleophosmin (NPM)/B23; Aiolos; Ikaros; Caspase 8; Apoptosis; TAR microRNAs; HIV-1; | |
Others : 1209082 DOI : 10.1186/1742-4690-10-86 |
|
received in 2013-06-22, accepted in 2013-08-06, 发布年份 2013 | |
【 摘 要 】
Background
The transactivating response (TAR) element of human immunodeficiency virus type 1 (HIV-1) is the source of two functional microRNAs (miRNAs), miR-TAR-5p and miR-TAR-3p. The objective of this study was to characterize the post-transcriptional regulation of host messenger RNAs (mRNAs) relevant to HIV-1 pathogenesis by HIV-1 TAR miRNAs.
Results
We demonstrated that TAR miRNAs derived from HIV-1 can incorporate into host effector Argonaute protein complexes, which is required if these miRNAs are to regulate host mRNA expression. Bioinformatic predictions and reporter gene activity assays identified regulatory elements complementary and responsive to miR-TAR-5p and miR-TAR-3p in the 3’ untranslated region (UTR) of several candidate genes involved in apoptosis and cell survival. These include Caspase 8, Aiolos, Ikaros and Nucleophosmin (NPM)/B23. Analyses of Jurkat cells that stably expressed HIV-1 TAR or contained a full-length latent HIV provirus suggested that HIV-1 TAR miRNAs could regulate the expression of genes in T cells that affect the balance between apoptosis and cell survival.
Conclusions
HIV-1 TAR miRNAs may contribute to the replication cycle and pathogenesis of HIV-1, by regulating host genes involved in the intricate balance between apoptosis and infected cell, to induce conditions that promote HIV-1 propagation and survival.
【 授权许可】
2013 Ouellet et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150602081445697.pdf | 2190KB | download | |
Figure 7. | 58KB | Image | download |
Figure 6. | 106KB | Image | download |
Figure 5. | 75KB | Image | download |
Figure 4. | 58KB | Image | download |
Figure 3. | 107KB | Image | download |
Figure 2. | 115KB | Image | download |
Figure 1. | 86KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Han J, et al.: The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004, 18(24):3016-27.
- [2]Bernstein E, et al.: Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409(6818):363-6.
- [3]Provost P, et al.: Ribonuclease activity and RNA binding of recombinant human Dicer. Embo J 2002, 21(21):5864-74.
- [4]Zhang H, et al.: Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. Embo J 2002, 21(21):5875-85.
- [5]Liu J, et al.: Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004, 305(5689):1437-41.
- [6]Chendrimada TP, et al.: TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005, 436(7051):740-4.
- [7]Gregory RI, et al.: Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005, 123(4):631-40.
- [8]Janowski BA, et al.: Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat Struct Mol Biol 2006, 13(9):787-92.
- [9]Brennecke J, et al.: Principles of microRNA-target recognition. PLoS Biol 2005, 3(3):e85.
- [10]Dingwall C, et al.: Human immunodeficiency virus 1 tat protein binds trans-activation-responsive region (TAR) RNA in vitro. Proc Natl Acad Sci U S A 1989, 86(18):6925-9.
- [11]Berkhout B, Silverman RH, Jeang KT: Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 1989, 59(2):273-82.
- [12]Laspia MF, Rice AP, Mathews MB: HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 1989, 59(2):283-92.
- [13]Kessler M, Mathews MB: Premature termination and processing of human immunodeficiency virus type 1-promoted transcripts. J Virol 1992, 66(7):4488-96.
- [14]Williams SA, et al.: NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J 2006, 25(1):139-49.
- [15]Shapshak P: Molecule of the month: miRNA and HIV-1 TAR. Bioinformation 2013, 9(2):65-6.
- [16]Berkhout B: Structural features in TAR RNA of human and simian immunodeficiency viruses: a phylogenetic analysis. Nucleic Acids Res 1992, 20(1):27-31.
- [17]Berkhout B: Structure and function of the human immunodeficiency virus leader RNA. Prog Nucleic Acid Res Mol Biol 1996, 54:1-34.
- [18]Wilkinson KA, et al.: High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol 2008, 6(4):e96.
- [19]Watts JM, et al.: Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 2009, 460(7256):711-6.
- [20]Leonard JN, et al.: HIV evades RNA interference directed at TAR by an indirect compensatory mechanism. Cell Host Microbe 2008, 4(5):484-94.
- [21]Klaver B, Berkhout B: Comparison of 5‘ and 3’ long terminal repeat promoter function in human immunodeficiency virus. J Virol 1994, 68(6):3830-40.
- [22]Das AT, Klaver B, Berkhout B: The 5‘ and 3’ TAR elements of human immunodeficiency virus exert effects at several points in the virus life cycle. J Virol 1998, 72(11):9217-23.
- [23]Ouellet DL, et al.: Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element. Nucleic Acids Res 2008, 36(7):2353-65.
- [24]Klase Z, et al.: HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol 2007, 8:63. BioMed Central Full Text
- [25]Wagschal A, et al.: Microprocessor, Setx, Xrn2, and Rrp6 Co-operate to Induce Premature Termination of Transcription by RNAPII. Cell 2012, 150(6):1147-57.
- [26]Omoto S, et al.: HIV-1 nef suppression by virally encoded microRNA. Retrovirology 2004, 1:44. BioMed Central Full Text
- [27]Bennasser Y, et al.: HIV-1 encoded candidate micro-RNAs and their cellular targets. Retrovirology 2004, 1:43. BioMed Central Full Text
- [28]Narayanan A, et al.: Analysis of the roles of HIV-derived microRNAs. Expert Opin Biol Ther 2011, 11(1):17-29.
- [29]Klase Z, et al.: HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression. Retrovirology 2009, 6:18. BioMed Central Full Text
- [30]Pfeffer S, et al.: Identification of virus-encoded microRNAs. Science 2004, 304(5671):734-6.
- [31]Choy EY, et al.: An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J Exp Med 2008, 205(11):2551-60.
- [32]Narayanan A, et al.: Exosomes derived from HIV-1 infected cells contain TAR RNA. J Biol Chem 2013, 288(27):20014-33.
- [33]Roshal M, Zhu Y, Planelles V: Apoptosis in AIDS. Apoptosis 2001, 6(1–2):103-16.
- [34]Varbanov M, Espert L, Biard-Piechaczyk M: Mechanisms of CD4 T-cell depletion triggered by HIV-1 viral proteins. AIDS Rev 2006, 8(4):221-36.
- [35]Genini D, et al.: HIV induces lymphocyte apoptosis by a p53-initiated, mitochondrial-mediated mechanism. FASEB J 2001, 15(1):5-6.
- [36]Petit F, et al.: Productive HIV-1 infection of primary CD4+ T cells induces mitochondrial membrane permeabilization leading to a caspase-independent cell death. J Biol Chem 2002, 277(2):1477-87.
- [37]Fevrier M, Dorgham K, Rebollo A: CD4+ T cell depletion in human immunodeficiency virus (HIV) infection: role of apoptosis. Viruses 2011, 3(5):586-612.
- [38]Maelfait J, Beyaert R: Non-apoptotic functions of caspase-8. Biochem Pharmacol 2008, 76(11):1365-73.
- [39]John LB, Ward AC: The Ikaros gene family: transcriptional regulators of hematopoiesis and immunity. Mol Immunol 2011, 48(9–10):1272-8.
- [40]Colombo E, Alcalay M, Pelicci PG: Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases. Oncogene 2011, 30(23):2595-609.
- [41]Plante I, et al.: Dicer-derived microRNAs are utilized by the fragile X mental retardation protein for assembly on target RNAs. J Biomed Biotechnol 2006, 2006(4):64347.
- [42]Okuwaki M, Tsujimoto M, Nagata K: The RNA binding activity of a ribosome biogenesis factor, nucleophosmin/B23, is modulated by phosphorylation with a cell cycle-dependent kinase and by association with its subtype. Mol Biol Cell 2002, 13(6):2016-30.
- [43]Brodersen P, Voinnet O: Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 2009, 10(2):141-8.
- [44]Ouellet DL, Provost P: Current knowledge of MicroRNAs and noncoding RNAs in virus-infected cells. Methods Mol Biol 2010, 623:35-65.
- [45]Jordan A, Bisgrove D, Verdin E: HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 2003, 22(8):1868-77.
- [46]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-33.
- [47]Billot K, et al.: Differential aiolos expression in human hematopoietic subpopulations. Leuk Res 2010, 34(3):289-93.
- [48]Lazebnik YA, et al.: Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 1994, 371(6495):346-7.
- [49]Li Q, et al.: Microarray analysis of lymphatic tissue reveals stage-specific, gene expression signatures in HIV-1 infection. J Immunol 2009, 183(3):1975-82.
- [50]Triboulet R, et al.: Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 2007, 315(5818):1579-82.
- [51]Friedrich BM, et al.: Host factors mediating HIV-1 replication. Virus Res 2011, 161(2):101-14.
- [52]Zhou H, et al.: Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 2008, 4(5):495-504.
- [53]Konig R, et al.: Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 2008, 135(1):49-60.
- [54]Dueck A: microRNAs associated with the different human Argonaute proteins. Nucleic Acids Res 2012, 40(19):9850-62.
- [55]Wee LM, et al.: Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 2012, 151(5):1055-67.
- [56]Chan EY, et al.: Dynamic host energetics and cytoskeletal proteomes in human immunodeficiency virus type 1-infected human primary CD4 cells: analysis by multiplexed label-free mass spectrometry. J Virol 2009, 83(18):9283-95.
- [57]Navare AT, et al.: Quantitative proteomic analysis of HIV-1 infected CD4+ T cells reveals an early host response in important biological pathways: protein synthesis, cell proliferation, and T-cell activation. Virology 2012, 429(1):37-46.
- [58]Thorne N, Inglese J, Auld DS: Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem Biol 2010, 17(6):646-57.
- [59]Yamakuchi M, Ferlito M, Lowenstein CJ: miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 2008, 105(36):13421-6.
- [60]Guo H, et al.: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466(7308):835-40.
- [61]Huang V, et al.: Upregulation of Cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Res 2012, 40(4):1695-707.
- [62]Li LC, et al.: Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A 2006, 103(46):17337-42.
- [63]Bartz SR, Emerman M: Human immunodeficiency virus type 1 Tat induces apoptosis and increases sensitivity to apoptotic signals by up-regulating FLICE/caspase-8. J Virol 1999, 73(3):1956-63.
- [64]Nie Z, et al.: Human immunodeficiency virus type 1 protease cleaves procaspase 8 in vivo. J Virol 2007, 81(13):6947-56.
- [65]Pulte D, et al.: Ikaros increases normal apoptosis in adult erythroid cells. Am J Hematol 2006, 81(1):12-8.
- [66]He LC, et al.: Ikaros is degraded by proteasome-dependent mechanism in the early phase of apoptosis induction. Biochem Biophys Res Commun 2011, 406(3):430-4.
- [67]Rebollo A, et al.: The association of Aiolos transcription factor and Bcl-xL is involved in the control of apoptosis. J Immunol 2001, 167(11):6366-73.
- [68]Romero F, et al.: Aiolos transcription factor controls cell death in T cells by regulating Bcl-2 expression and its cellular localization. Embo J 1999, 18(12):3419-30.
- [69]Li YP: Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus protein Tat. J Virol 1997, 71(5):4098-102.
- [70]Fankhauser C, et al.: Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol Cell Biol 1991, 11(5):2567-75.
- [71]Perkins A, et al.: Structural and functional characterization of the human immunodeficiency virus rev protein. J Acquir Immune Defic Syndr 1989, 2(3):256-63.
- [72]Gadad SS, et al.: HIV-1 infection induces acetylation of NPM1 that facilitates Tat localization and enhances viral transactivation. J Mol Biol 2011, 410(5):997-1007.
- [73]Meister G, et al.: Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004, 15(2):185-97.
- [74]Landry P, et al.: Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 2009, 16(9):961-6.