Neural Development | |
Multiple conserved regulatory domains promote Fezf2 expression in the developing cerebral cortex | |
Bin Chen1  John L R Rubenstein2  Axel Visel4  Robin Roque1  Chao Guo1  Sol Katzman3  William L McKenna1  Kathryn A Larkin1  Matthew J Eckler1  | |
[1] Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA;Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California, San Francisco, CA, USA;Center for Biomolecular Science and Engineering, University of California, Santa Cruz, CA, USA;U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, USA | |
关键词: Transcription; Gene regulation; Cerebral cortex; Promoter; Enhancer; Fezf2; | |
Others : 803180 DOI : 10.1186/1749-8104-9-6 |
|
received in 2013-12-03, accepted in 2014-02-19, 发布年份 2014 | |
【 摘 要 】
Background
The genetic programs required for development of the cerebral cortex are under intense investigation. However, non-coding DNA elements that control the expression of developmentally important genes remain poorly defined. Here we investigate the regulation of Fezf2, a transcription factor that is necessary for the generation of deep-layer cortical projection neurons.
Results
Using a combination of chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) we mapped the binding of four deep-layer-enriched transcription factors previously shown to be important for cortical development. Building upon this we characterized the activity of three regulatory regions around the Fezf2 locus at multiple stages throughout corticogenesis. We identified a promoter that was sufficient for expression in the cerebral cortex, and enhancers that drove reporter gene expression in distinct forebrain domains, including progenitor cells and cortical projection neurons.
Conclusions
These results provide insight into the regulatory logic controlling Fezf2 expression and further the understanding of how multiple non-coding regulatory domains can collaborate to control gene expression in vivo.
【 授权许可】
2014 Eckler et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140708034812817.pdf | 2005KB | download | |
Figure 6. | 53KB | Image | download |
Figure 5. | 263KB | Image | download |
Figure 4. | 236KB | Image | download |
Figure 3. | 325KB | Image | download |
Figure 2. | 100KB | Image | download |
Figure 1. | 76KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Mouse Genome Sequencing Consortium, et al.: Initial sequencing and comparative analysis of the mouse genome. Nature 2002, 420:520-562.
- [2]Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK, Gibbs RA, Kent WJ, Miller W, Haussler D: Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 2005, 15:1034-1050.
- [3]Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramaniam G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKuisck VA, Zinder N, et al.: The sequence of the human genome. Science 2001, 291:1304-1351.
- [4]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehockzy J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, et al.: Initial sequencing and analysis of the human genome. Nature 2001, 409:860-921.
- [5]Williamson I, Hill RE, Bickmore WA: Enhancers: from developmental genetics to the genetics of common human disease. Dev Cell 2011, 21:17-19.
- [6]Genomes Project C: A map of human genome variation from population-scale sequencing. Nature 2010, 467:1061-1073.
- [7]International Schizophrenia Consortium: Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008, 455:237-241.
- [8]Hamilton SP, Woo JM, Carlson EJ, Ghanem N, Ekker M, Rubenstein JL: Analysis of four DLX homeobox genes in autistic probands. BMC Genetics 2005, 6:52. BioMed Central Full Text
- [9]Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks J, Spence SJ, Lee AT, Puura K, Lehtimaki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, et al.: Strong association of de novo copy number mutations with autism. Science 2007, 316:445-449.
- [10]Wray GA: The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 2007, 8:206-216.
- [11]Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, Afzal V, Ren B, Rubin EM, Pennacchio LA: ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 2009, 457:854-858.
- [12]Kwan KY, Sestan N, Anton ES: Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 2012, 139:1535-1546.
- [13]Chen B, Schaevitz LR, McConnell SK: Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc Natl Acad Sci U S A 2005, 102:17184-17189.
- [14]Chen B, Wang SS, Hattox AM, Rayburn H, Nelson SB, McConnell SK: The Fezf2-Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex. Proc Natl Acad Sci U S A 2008, 105:11382-11387.
- [15]Chen JG, Rasin MR, Kwan KY, Sestan N: Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc Natl Acad Sci U S A 2005, 102:17792-17797.
- [16]Molyneaux BJ, Arlotta P, Hirata T, Hibi M, Macklis JD: Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 2005, 47:817-831.
- [17]Rouaux C, Arlotta P: Fezf2 directs the differentiation of corticofugal neurons from striatal progenitors in vivo. Nat Neurosci 2010, 13:1345-1347.
- [18]De la Rossa A, Bellone C, Golding B, Vitali I, Moss J, Toni N, Luscher C, Jabaudon D: In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons. Nat Neurosci 2013, 16:193-200.
- [19]Rouaux C, Arlotta P: Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo. Nat Cell Biol 2012, 15:214-221.
- [20]Hirata T, Suda Y, Nakao K, Narimatsu M, Hirano T, Hibi M: Zinc finger gene fez-like functions in the formation of subplate neurons and thalamocortical axons. Dev Dyn 2004, 230:546-556.
- [21]Inoue K, Terashima T, Nishikawa T, Takumi T: Fez1 is layer-specifically expressed in the adult mouse neocortex. Eur J Neurosci 2004, 20:2909-2916.
- [22]Han W, Kwan KY, Shim S, Lam MM, Shin Y, Xu X, Zhu Y, Li M, Sestan N: TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract. Proc Natl Acad Sci U S A 2011, 108:3041-3046.
- [23]Kwan KY, Lam MM, Krsnik Z, Kawasawa YI, Lefebvre V, Sestan N: SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc Natl Acad Sci U S A 2008, 105:16021-16026.
- [24]McKenna WL, Betancourt J, Larkin KA, Abrams B, Guo C, Rubenstein JL, Chen B: Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development. J Neurosci 2011, 31:549-564.
- [25]Alcamo EA, Chirivella L, Dautzenberg M, Dobreva G, Farinas I, Grosschedl R, McConnell SK: Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 2008, 57:364-377.
- [26]Azim E, Jabaudon D, Fame RM, Macklis JD: SOX6 controls dorsal progenitor identity and interneuron diversity during neocortical development. Nat Neurosci 2009, 12:1238-1247.
- [27]Baranek C, Dittrich M, Parthasarathy S, Bonnon CG, Britanova O, Lanshakov D, Boukhtouche F, Sommer JE, Colmenares C, Tarabykin V, Atanasoski S: Protooncogene Ski cooperates with the chromatin-remodeling factor Satb2 in specifying callosal neurons. Proc Natl Acad Sci U S A 2012, 109:3546-3551.
- [28]Batista-Brito R, Rossignol E, Hjerling-Leffler J, Denaxa M, Wegner M, Lefebvre V, Pachnis V, Fishell G: The cell-intrinsic requirement of Sox6 for cortical interneuron development. Neuron 2009, 63:466-481.
- [29]Britanova O, de Juan RC, Cheung A, Kwan KY, Schwark M, Gyorgy A, Vogel T, Akopov S, Mitkovski M, Agoston D, Sestan N, Molnar Z, Tarabykin V: Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 2008, 57:378-392.
- [30]Hanashima C, Li SC, Shen L, Lai E, Fishell G: Foxg1 suppresses early cortical cell fate. Science 2004, 303:56-59.
- [31]Lai T, Jabaudon D, Molyneaux BJ, Azim E, Arlotta P, Menezes JR, Macklis JD: SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron 2008, 57:232-247.
- [32]Miyoshi G, Fishell G: Dynamic FoxG1 expression coordinates the integration of multipolar pyramidal neuron precursors into the cortical plate. Neuron 2012, 74:1045-1058.
- [33]Piper M, Moldrich RX, Lindwall C, Little E, Barry G, Mason S, Sunn N, Kurniawan ND, Gronostajski RM, Richards LJ: Multiple non-cell-autonomous defects underlie neocortical callosal dysgenesis in Nfib-deficient mice. Neural Dev 2009, 4:43. BioMed Central Full Text
- [34]Visel A, Minovitsky S, Dubchak I, Pennacchio LA: VISTA Enhancer Browser–a database of tissue-specific human enhancers. Nucleic Acids Res 2007, 35:D88-D92.
- [35]Hirata T, Nakazawa M, Muraoka O, Nakayama R, Suda Y, Hibi M: Zinc-finger genes Fez and Fez-like function in the establishment of diencephalon subdivisions. Development 2006, 133:3993-4004.
- [36]Shim S, Kwan KY, Li M, Lefebvre V, Sestan N: Cis-regulatory control of corticospinal system development and evolution. Nature 2012, 486:74-79.
- [37]Visel A, Taher L, Girgis H, May D, Golonzhka O, Hoch RV, McKinsey GL, Pattabiraman K, Silberberg SN, Blow MJ, Hansen DV, Nord AS, Akiyama JA, Holt A, Hosseini R, Phouanenavong S, Plajzer-Frick I, Shoukry M, Afzal M, Kaplan T, Kriegstein AR, Rubin EM, Ovcharenko I, Pennacchio LA, Rubinstein JL: A high-resolution enhancer atlas of the developing telencephalon. Cell 2013, 152:895-908.
- [38]Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B: Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012, 485:376-380.
- [39]Guo C, Eckler MJ, McKenna WL, McKinsey GL, Rubenstein JL, Chen B: Fezf2 expression identifies a multipotent progenitor for neocortical projection neurons, astrocytes, and oligodendrocytes. Neuron 2013, 80:1167-1174.
- [40]Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N: A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 2003, 425:917-925.
- [41]Andrioli LP, Vasisht V, Theodosopoulou E, Oberstein A, Small S: Anterior repression of a Drosophila stripe enhancer requires three position-specific mechanisms. Development 2002, 129:4931-4940.
- [42]Perry MW, Boettiger AN, Levine M: Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo. Proc Natl Acad Sci U S A 2011, 108:13570-13575.
- [43]Thanos D, Maniatis T: Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 1995, 83:1091-1100.
- [44]Marinic M, Aktas T, Ruf S, Spitz F: An integrated holo-enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape. Dev Cell 2013, 24:530-542.
- [45]Shimizu T, Nakazawa M, Kani S, Bae YK, Shimizu T, Kageyama R, Hibi M: Zinc finger genes Fezf1 and Fezf2 control neuronal differentiation by repressing Hes5 expression in the forebrain. Development 2010, 137:1875-1885.
- [46]Nagy A: Manipulating the mouse embryo: a laboratory manual. 3rd edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2003.
- [47]Eckler MJ, McKenna WL, Taghvaei S, McConnell SK, Chen B: Fezf1 and Fezf2 are required for olfactory development and sensory neuron identity. J Comp Neurol 2011, 519:1829-1846.
- [48]Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS: Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008, 9:R137. BioMed Central Full Text