期刊论文详细信息
Molecular Cytogenetics
A de novo triplication on 2q22.3 including the entire ZEB2 gene associated with global developmental delay, multiple congenital anomalies and behavioral abnormalities
Liyang Liang2  Zhe Meng2  Junping Zhu1  Mengfan Chen1  Lina Zhang2  Haiming Yuan3 
[1] Guangzhou kingmed center for clinical laboratory Co., Ltd, Guangzhou 510330, , Guangdong, China;Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, , Guangdong, China;KingMed School of Laboratory Medicine Guangzhou Medical University, Guangzhou 510330, , Guangdong, China
关键词: ZEB2-triplication;    Behavioral abnormalities;    Congenital anomalies;    Developmental delay;    Intellectual disability;    Distinctive facial features;    Mowat-Wilson syndrome;   
Others  :  1235123
DOI  :  10.1186/s13039-015-0206-8
 received in 2015-08-20, accepted in 2015-12-18,  发布年份 2015
PDF
【 摘 要 】

Background

Mowat-Wilson syndrome (MWS) is a genetic condition characterized by distinctive facial features, moderate to severe intellectual disability, developmental delay and multiple congenital anomalies. MWS is caused by heterozygous mutations or deletions of the ZEB2 gene located on chromosome 2q22.3. At present, over 190 cases with mutations and deletions involving the ZEB2 gene have been reported, but triplication or duplication of reciprocal region of Mowat-Wilson syndrome has never been reported.

Case Presentation

Here we report a 2-year-2-month-old boy carrying a de novo 2.9 Mb complex copy number gain at 2q22.3 involving triplication of ZEB2 gene. The boy is characterized by intrauterine growth retardation, hypotonia, cognitive impairment, multiple congenital anomalies and behavioral abnormalities.

Conclusion

This case provides evidence that triplication of ZEB2 gene may be clinical significance and ZEB2 gene is likely to be a dosage sensitive gene.

【 授权许可】

   
2015 Yuan et al.

【 预 览 】
附件列表
Files Size Format View
20160101083022181.pdf 1196KB PDF download
Fig. 3. 21KB Image download
Fig 2. 68KB Image download
Figure 9. 116KB Image download
【 图 表 】

Figure 9.

Fig 2.

Fig. 3.

【 参考文献 】
  • [1]Mowat DR, Croaker GD, Cass DT, Kerr BA, Chaitow J, Adès LC et al.. Hirschsprung disease, microcephaly, mental retardation, and characteristic facial features: Delineation of a new syndrome and identification of a locus at chromosome 2q22–q23. J Med Genet. 1998; 35(8):617-23.
  • [2]Mowat DR, Wilson MJ, Goossens M. Mowat–Wilson syndrome. J Med Genet. 2003; 40(5):305-10.
  • [3]Wakamatsu N, Yamada Y, Yamada K, Ono T, Nomura N, Taniguchi H et al.. Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung disease. Nat Genet. 2001; 27(4):369-70.
  • [4]Zweier C, Horn D, Kraus C, Rauch A. Atypical ZFHX1B mutation associated with a mild Mowat–Wilson syndrome phenotype. Am J Med Genet A. 2006; 140(8):869-72.
  • [5]Wilson M, Mowat D, Dastot-Le Moal F, Cacheux V, Kaariainen H et al.. Further delineation of the phenotype associated with heterozygous mutations in ZFHX1B. Am J Med Genet A. 2003; 119A(3):257-65.
  • [6]Garavelli L, Mainardi PC. Mowat–Wilson syndrome. Orphanet J Rare Dis. 2007; 2:42. BioMed Central Full Text
  • [7]Evans E, Einfeld S, Mowat D, Taffe J, Tonge B, Wilson M. The behavioral phenotype of Mowat-Wilson syndrome. Am J Med Genet A. 2012; 158A(2):358-66.
  • [8]Bourchany A, Giurgea I, Thevenon J, Goldenberg A, Morin G, Bremond-Gignac D et al.. Clinical spectrum of eye malformations in four patients with Mowat-Wilson syndrome. Am J Med Genet A. 2015; 167(7):1587-92.
  • [9]Wenger TL, Harr M, Ricciardi S, Bhoj E, Santani A, Adam MP et al.. CHARGE-like presentation, craniosynostosis and mild Mowat–Wilson syndrome diagnosed by recognition of the distinctive facial gestalt in a cohort of 28 new cases. Am J Med Genet A. 2014; 164A(10):2557-66.
  • [10]Hartill VL, Pendlebury M, Hobson E. Mowat-Wilson syndrome associated with craniosynostosis. Clin Dysmorphol. 2014; 23(1):16-9.
  • [11]Zweier C, Thiel CT, Dufke A, Crow YJ, Meinecke P, Suri M et al.. Clinical and mutational spectrum of Mowat–Wilson syndrome. Eur J Med Genet. 2005; 48(2):97-111.
  • [12]Dastot-Le Moal F, Wilson M, Mowat D, Collot N, Niel F, Goossens M. ZFHX1B mutations in patients with Mowat-Wilson syndrome. Hum Mutat. 2007; 28(4):313-21.
  • [13]Garavelli L, Zollino M, Mainardi PC, Gurrieri F, Rivieri F, Soli F et al.. Mowat–Wilson syndrome: facial phenotype changing with age: study of 19 Italian patients and review of the literature. Am J Med Genet Part A. 2009; 149A(3):417-26.
  • [14]Adam MP, Conta J, Bean LJH. Mowat-Wilson Syndrome. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2015. http://www. ncbi.nlm.nih.gov/pubmed/?term=Adam+MP%2C+Conta+J%2C+Bean+LJH.+Mowat-Wilson+Syndrome webcite
  • [15]Seoh ML, Ng CH, Yong J, Lim L, Leung T. ArhGAP15, a novel human RacGAP protein with GTPase binding property. FEBS Lett. 2003; 539(1–3):131-7.
  • [16]Zhao E, Li Y, Fu X, Zhang JY, Zeng H, Zeng L et al.. Cloning and expression of human GTDC1 gene (glycosyltransferase-like domain containing 1) from human fetal library. DNA Cell Biol. 2004; 23(3):183-7.
  • [17]Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P et al.. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5'-CACCT sequences in candidate target genes. J Biol Chem. 1999; 274(29):20489-98.
  • [18]Eisaki A, Kuroda H, Fukui A, Asashima M. XSIP1, a member of two-handed zinc finger proteins, induced anterior neural markers in Xenopuslaevis animal cap. Biochem Biophys Res Commun. 2000; 271(1):151-7.
  • [19]Amir RE, Van den Vewer IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999; 23(2):185-8.
  • [20]Ramocki MB, Tavyev YJ, Peters SU. The MECP2 duplication syndrome. Am J Med Genet A. 2010; 152A(5):1079-88.
  • [21]Wax JR, Pinette MG, Smith R, Chard R, Cartin A. Second-trimester prenasal and prefrontal skin thickening-association with MECP2 triplication syndrome. J Clin Ultrasound. 2013; 41(7):434-7.
  • [22]Boyle MI, Jespersgaard C, Brondum-Nielsen K, Bisgaard AM, Tumer Z. Cornelia de lange syndrome. Clin Genet. 2015; 88(1):1-12.
  • [23]Novara F, Alfei E, D'Arrigo S, Pantaleoni C, Beri S, Achille V et al.. 5p13 microduplication syndrome: a new case and better clinical definition of the syndrome. Eur J Med Genet. 2013; 56(1):54-8.
  • [24]Yan J, Zhang F, Brundage E, Scheuerle A, Lanpher B, Erickson RP et al.. Genomic duplication resulting in increased copy number of genes encoding the sister chromatid cohesion complex conveys clinical consequences distinct from Cornelia de Lange. J Med Genet. 2009; 46(9):626-34.
  • [25]Oexle K, Hempel M, Jauch A, Meitinger T, Rivera-Brugues N, Stengel-Rutkowski S et al.. 3.7 Mb tandem microduplication in chromosome 5p13.1-p13.2 associated with developmental delay, macrocephaly, obesity, and lymphedema. Further characterization of the dup(5p13) syndrome. Eur J Med Genet. 2011; 54(3):225-30.
  • [26]Tatton-Brown K, Cole TRP, Rahman N. Sotos Syndrome. GeneReviews® [Internet]. University of Washington, Seattle, Seattle (WA); 2004. 1993–2015
  • [27]Novara F, Stanzial F, Rossi E, Benedicenti F, Inzana F, Di Gregorio E et al.. Defining the phenotype associated with microduplication reciprocal to Sotos syndrome microdeletion. Am J Med Genet A. 2014; 164A(8):2084-90.
  • [28]Rosenfeld JA, Kim KH, Angle B, Troxell R, Gorski JL, Westemeyer M et al.. Further Evidence of Contrasting Phenotypes Caused by Reciprocal Deletions and Duplications: Duplication of NSD1 Causes Growth Retardation and Microcephaly. Mol Syndromol. 2013; 3(6):247-54.
  文献评价指标  
  下载次数:23次 浏览次数:12次