期刊论文详细信息
Molecular Neurodegeneration
Renin angiotensin system and gender differences in dopaminergic degeneration
Jose L Labandeira-Garcia1  Maria J Guerra1  Pablo Garrido-Gil1  Belen Joglar1  Rita Valenzuela1  Ana I Rodriguez-Perez1 
[1] Department of Morphological Sciences, Networking Research Center on Neurodegenerative Diseases (CIBERNED), University of Santiago de Compostela, Santiago de Compostela, E-15782 Spain
关键词: sex differences;    Parkinson;    oxidative stress;    neurodegeneration;    NADPH-oxidase complex;    menopause;    estrogen;    angiotensin;   
Others  :  865694
DOI  :  10.1186/1750-1326-6-58
 received in 2011-04-07, accepted in 2011-08-16,  发布年份 2011
PDF
【 摘 要 】

Background

There are sex differences in dopaminergic degeneration. Men are approximately two times as likely as premenopausal women of the same age to develop Parkinson's disease (PD). It has been shown that the local renin angiotensin system (RAS) plays a prominent role in sex differences in the development of chronic renal and cardiovascular diseases, and there is a local RAS in the substantia nigra and dopaminergic cell loss is enhanced by angiotensin via type 1 (AT1) receptors.

Results

In the present study, we observed that intrastriatal injection of 6-hydroxydopamine induced a marked loss of dopaminergic neurons in the substantia nigra of male rats, which was significantly higher than the loss induced in ovariectomized female rats given estrogen implants (i.e. rats with estrogen). However, the loss of dopaminergic neurons was significantly lower in male rats treated with the AT1 antagonist candesartan, and similar to that observed in female rats with estrogen. The involvement of the RAS in gender differences in dopaminergic degeneration was confirmed with AT1a-null mice lesioned with the dopaminergic neurotoxin MPTP. Significantly higher expression of AT1 receptors, angiotensin converting enzyme activity, and NADPH-oxidase complex activity, and much lower levels of AT2 receptors were observed in male rats than in female rats with estrogen.

Conclusions

The results suggest that brain RAS plays a major role in the increased risk of developing PD in men, and that manipulation of brain RAS may be an efficient approach for neuroprotective treatment of PD in men, without the feminizing effects of estrogen.

【 授权许可】

   
2011 Rodriguez-Perez et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140726085219639.pdf 17062KB PDF download
94KB Image download
78KB Image download
66KB Image download
34KB Image download
Figure 1. 29KB Image download
120KB Image download
145KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Mayeux R, Marder K, Cote LJ, Denaro J, Hemenegildo N, Mejia H, Tang MX, Lantigua R, Wilder D, Gurland B, et al.: The frequency of idiopathic Parkinson's disease by age, ethnic group, and sex in northern Manhattan, 1988-1993. Am J Epidemiol 1995, 142:820-827.
  • [2]Baldereschi M, Di Carlo A, Rocca WA, Vanni P, Maggi S, Perissinotto E, Grigoletto F, Amaducci L, Inzitari D: Parkinson's disease and parkinsonism in a longitudinal study: two-fold higher incidence in men. ILSA Working Group. Italian Longitudinal Study on Aging. Neurology 2000, 5:1358-1363.
  • [3]Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, Nelson LM: Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 2003, 157:1015-1022.
  • [4]González-Hernández T, Cruz-Muros I, Afonso-Oramas D, Salas-Hernandez J, Castro-Hernandez J: Vulnerability of mesostriatal dopaminergic neurons in Parkinson's disease. Front Neuroanat 2010, 4:140. PMID:21079748
  • [5]Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK: Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res 2002, 91:406-413.
  • [6]Cai H, Griendling KK, Harrison DG: The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends PharmacolSci 2003, 24:471-478.
  • [7]Touyz RM, Chen X, Tabet F, Yao G, He G, Quinn MT, Pagano PJ, Schiffrin EL: Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res 2002, 14:1205-1213.
  • [8]Babior B: NADPH oxidase: An update. Blood 1999, 93:1464-1476.
  • [9]Babior BM: NADPH oxidase. Curr Opin Immunol 2004, 16:42-47.
  • [10]Fischer M, Baessler A, Schunkert H: Renin angiotensin system and gender differences in the cardiovascular system. Cardiovasc Res 2002, 53:672-677.
  • [11]McGuire BB, Watson RW, Pérez-Barriocanal F, Fitzpatrick JM, Docherty NG: Gender differences in the renin-angiotensin and nitric oxide systems: relevance in the normal and diseased kidney. Kidney Blood Press Res 2007, 30:67-80.
  • [12]Sandberg K, Ji H: Sex and the renin angiotensin system: implications for gender differences in the progression of kidney disease. Adv Ren Replace Ther 2003, 10:15-23.
  • [13]Liu J, Ji H, Zheng W, Wu X, Zhu JJ, Arnold AP, Sandberg K: Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent. Biol Sex Differ 2010, 1:6. BioMed Central Full Text
  • [14]Baiardi G, Macova M, Armando I, Ando H, Tyurmin D, Saavedra JM: Estrogen upregulates renal angiotensin II AT1 and AT2 receptors in the rat. Regul Pept 2005, 124:7-17.
  • [15]Sullivan JC: Sex and the renin-angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition. Am J Physiol Regul Integr Comp Physiol 2008, 294:R1220-1226.
  • [16]Chen J, Yang S, Hu S, Choudhry MA, Bland KI, Chaudry IH: Estrogen prevents intestinal inflammation after trauma-hemorrhage via downregulation of angiotensin II and angiotensin II subtype I receptor. Am J Physiol Gastrointest Liver Physiol 2008, 295:G1131-1137.
  • [17]Dean SA, Tan J, O'Brien ER, Leenen FH: 17beta-estradiol downregulates tissue angiotensin-converting enzyme and ANG II type 1 receptor in female rats. Am J Physiol Regul Integr Comp Physiol 2004, 288:R759-766.
  • [18]Nickenig G, Bäumer AT, Grohè C, Kahlert S, Strehlow K, Rosenkranz S, Stäblein A, Beckers F, Smits JF, Daemen MJ, Vetter H, Böhm M: Estrogen modulates AT1 receptor gene expression in vitro and in vivo. Circulation 1998, 97:2197-2201.
  • [19]Ojeda NB, Royals TP, Black JT, Dasinger JH, Johnson JM, Alexander BT: Enhanced sensitivity to acute angiotensin II is testosterone dependent in adult male growth-restricted offspring. Am J Physiol Regul Integr Comp Physiol 2010, 298:R1421-1427.
  • [20]Henriques T, Zhang X, Yiannikouris FB, Daugherty A, Cassis LA: Androgen increases AT1a receptor expression in abdominal aortas to promote angiotensin II-induced AAAs in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2008, 28:1251-1256.
  • [21]McKinley MJ, Albiston AL, Allen AM, Mathai ML, May CN, McAllen RM, Oldfield BJ, Mendelsohn FAO, Chai S: The brain reenin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol 2003, 35:901-918.
  • [22]Saavedra JM: Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities. Cell Mol Neurobiol 2005, 25:485-512.
  • [23]Rey P, Lopez-Real A, Sanchez-Iglesias S, Muñoz A, Soto-Otero R, Labandeira-Garcia JL: Angiotensin type-1-receptor antagonists reduce 6-hydroxydopamine toxicity for dopaminergic neurons. Neurobiol Aging 2007, 28:555-567.
  • [24]Rodriguez-Pallares J, Rey P, Parga JA, Muñoz A, Guerra MJ, Labandeira-Garcia JL: Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS. Neurobiol Dis 2008, 31:58-73.
  • [25]Joglar B, Rodriguez-Pallares J, Rodríguez-Perez AI, Rey P, Guerra MJ, Labandeira-Garcia JL: The inflammatory response in the MPTP model of Parkinson's disease is mediated by brain angiotensin: relevance to progression of the disease. J Neurochem 2009, 109:656-669.
  • [26]Lloyd GW, Patel NR, McGing E, Cooper AF, Brennand-Roper D, Jackson G: Does angina vary with the menstrual cycle in women with premenopausal coronary artery disease? Heart 2000, 84:189-192.
  • [27]Mills PJ, Ziegler MG, Nelesen RA, Kennedy BP: The effects of the menstrual cycle, race, and gender on adrenergic receptors and agonists. Clin Pharmacol Ther 1996, 60:99-104.
  • [28]Li JM, Shah AM: Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit. J Biol Chem 2003, 278:12094-12100.
  • [29]Rueckschloss U, Quinn MT, Holtz J, Morawietz H: Dose-dependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2002, 22:1845-1851.
  • [30]Gao HM, Liu B, Zhang W, Hong JS: Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease. FASEB J 2003, 17:1957-1959.
  • [31]Andersen JK: Oxidative stress in neurodegeneration: cause or consequence. Nat Med 2004, 10:S18-25.
  • [32]Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Choi DK, Przedborski S: Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 2002, 22:1763-1771.
  • [33]Wu D, Teisman P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S: NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson¨s disease. Proc Natl Acad Sci USA 2003, 100:6145-6150.
  • [34]Qin L, Liu Y, Wang T, Wei SJ, Block ML, Wilson B, Liu B, Hong JS: NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 2004, 279:1415-1421.
  • [35]Sohn HY, Raff U, Hoffmann A, Gloe T, Heermeier K, Galle J, Pohl U: Differential role of angiotensin II receptor subtypes on endothelial superoxide formation. Br J Pharmacol 2000, 131:667-672.
  • [36]Lu Q, Zhu YZ, Wong PT: Neuroprotective effects of candesartan against cerebral ischemia in spontaneously hypertensive rats. Neuroreport 2005, 16:1963-1967.
  • [37]Hamai M, Iwai M, Ide A, Tomochika H, Tomono Y, Mogi M, Horiuchi M: Comparison of inhibitory action. Neuropharmacology 2006, 51:822-828.
  • [38]Rodriguez-Pallares J, Parga JA, Muñoz A, Rey P, Guerra MJ, Labandeira-Garcia JL: Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. J Neurochem 2007, 103:145-156.
  • [39]Suzuki S, Brown CM, Dela Cruz CD, Yang E, Bridwell DA, Wise PM: Timing of estrogen therapy after ovariectomy dictates the efficacy of its neuroprotective and antiinflammatory actions. Proc Natl Acad Sci USA 2007, 104:6013-6018.
  • [40]Turgeon JL, Carr MC, Maki PM, Mendelsohn ME, Wise PM: Complex actions of sex steroids in adipose tissue, the cardiovascular system, and brain: Insights from basic science and clinical studies. Endocr Rev 2006, 27:575-605.
  • [41]Morale MC, Serra PA, L'episcopo F, Tirolo C, Caniglia S, Testa N, Gennuso F, Giaquinta G, Rocchitta G, Desole MS, Miele E, Marchetti B: Estrogen, neuroinflammation and neuroprotection in Parkinson's disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience 2006, 138:869-878.
  • [42]Tripanichkul W, Sripanichkulchai K, Finkelstein DI: Estrogen down-regulates glial activation in male mice following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication. Brain Res 2006, 1084:28-37.
  • [43]Xue B, Zhao Y, Johnson AK, Hay M: Central estrogen inhibition of angiotensin II-induced hypertension in male mice and the role of reactive oxygen species. Am J Physiol Heart Circ Physiol 2008, 295:H1025-1032.
  • [44]Ito K, Hirooka Y, Kimura Y, Sagara Y, Sunagawa K: Ovariectomy augments hypertension through rho-kinase activation in the brain stem in female spontaneously hypertensive rats. Hypertension 2006, 48:651-657.
  • [45]Song J, Kost CK Jr, Martin DS: Androgens potentiate renal vascular responses to angiotensin II via amplification of the Rho kinase signaling pathway. Cardiovasc Res 2006, 72:456-463.
  • [46]de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T: International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 2000, 52:415-472.
  • [47]Correa FM, Viswanathan M, Ciuffo GM, Tsutsumi K, Saavedra JM: Kidney angiotensin II receptors and converting enzyme in neonatal and adult Wistar-Kyoto and spontaneously hypertensive rats. Peptides 1995, 16:19-24.
  • [48]Ozono R, Wang ZQ, Moore AF, Inagami T, Siragy HM, Carey RM: Expression of the subtype 2 angiotensin (AT2) receptor protein in rat kidney. Hypertension 1997, 30:1238-1246.
  • [49]Wu L, Iwai M, Nakagami H, Li Z, Chen R, Suzuki J, Akishita M, de Gasparo M, Horiuchi M: Roles of angiotensin II type 2 receptor stimulation associated with selective angiotensin II type 1 receptor blockade with valsartan in the improvement of inflammation-induced vascular injury. Circulation 2001, 104:2716-2721.
  • [50]Villar-Cheda B, Valenzuela R, Rodriguez-Perez AI, Guerra MJ, Labandeira-Garcia JL: Aging-related changes in the nigral angiotensin system enhances proinflammatory and pro-oxidative markers and 6-OHDA-induced dopaminergic degeneration. Neurobiol Aging 2010. PMID:20888078
  • [51]Villar-Cheda B, Rodríguez-Pallares J, Muñoz A, Valenzuela R, Guerra MJ, Baltatu OC, Labandeira-Garcia JL: Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: implications for progression of Parkinson's disease. Eur J Neurosci 2010, 32:1695-1706.
  • [52]Zeng C, Liu Y, Wang Z, He D, Huang L, Yu P, Zheng S, Jones JE, Asico LD, Hopfer U, Eisner GM, Felder RA, Jose PA: Activation of D3 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells. Circ Res 2006, 99:494-500.
  • [53]Khan F, Spicarová Z, Zelenin S, Holtbäck U, Scott L, Aperia A: Negative reciprocity between angiotensin II type 1 and dopamine D1 receptors in rat renal proximal tubule cells. Am J Physiol Renal Physiol 2008, 295:F1110-1116.
  • [54]Gildea JJ: Dopamine and angiotensin as renal counterregulatory systems controlling sodium balance. Curr Opin Nephrol Hypertens 2009, 18:28-32.
  • [55]Sugaya T, Nishimatsu S, Tanimoto K, Takimoto E, Yamagishi T, Imamura K, Goto S, Imaizumi K, Hisada Y, Otsuka A, et al.: Angiotensin II type 1a receptor-deficient mice with hypotension and hyperreninemia. J Biol Chem 1995, 270:18719-18722.
  • [56]Paxinos G, Watson C: The rat brain in stereotaxic coordinates. New York: Academic Press; 1985.
  • [57]Dziuk PJ, Cook B: Passage of steroids through silicone rubber. Endocrinology 1966, 78:208-211.
  • [58]Febo M, Ferris CF, Segarra AC: Estrogen influences cocaine-induced blood oxygen level-dependent signal changes in female rats. J Neurosci 2005, 25:1132-1136.
  • [59]Rodriguez-Perez AI, Valenzuela R, Villar-Cheda B, Guerra MJ, Lanciego JL, Labandeira-Garcia JL: Estrogen and angiotensin interaction in the substantia nigra. Relevance to postmenopausal Parkinson's disease. Exp Neurol 2010, 224:517-26.
  • [60]Mannino CA, South SM, Inturrisi CE, Quinones-Jenab V: Pharmacokinetics and effects of 17beta-estradiol and progesterone implants in ovariectomized rats. J Pain 2005, 6:809-816.
  • [61]Fugger HN, Foster TC, Gustafsson J, Rissman EF: Novel effects of estradiol and estrogen receptor alpha and beta on cognitive function. Brain Res 2000, 883:258-264.
  • [62]Unger T: Inhibiting angiotensin receptors in the brain: possible therapeutic implications. Curr Med Res Opin 2003, 19:449-451.
  • [63]Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D, Togasaki DM: Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 1995, 67:631-647.
  • [64]Sauer H, Oertel WH: Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunohistochemical study in the rat. Neuroscience 1994, 59:401-415.
  • [65]Hemming ML, Selkoe DJ, Farris W: Effects of prolonged angiotensin-converting enzyme inhibitor treatment on amyloid β-protein metabolism in mouse models of Alzheimer disease. Neurobiol Dis 2007, 26:273-281.
  • [66]Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW: Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994, 74:1141-1148.
  • [67]Hong H, Zeng JS, Kreulen DL, Kaufman DI, Chen AF: Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischemic stroke. Am J Physiol Heart Circ Physiol 2006, 291:H2210-2215.
  • [68]Gundersen HJG, Bendsen TF, Korbo L, Marcussen N, Moller A, Nielsen K: Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APIMS 1988, 96:379-394.
  文献评价指标  
  下载次数:26次 浏览次数:42次