期刊论文详细信息
Respiratory Research
Pyocyanin-induced mucin production is associated with redox modification of FOXA2
Gee W Lau2  Brent E Walling2  Ying Xu1  Zhizhou Kuang2  Yonghua Hao2 
[1] Laboratory of Clinical Immunology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China;Department of Pathobiology, University of Illinois at Urbana-Champaign 2001, Lincoln Avenue, Urbana, IL, 61802, United States of America
关键词: Mucus hypersecretion;    FOXA2;    Posttranslational modifications;    Reactive oxygen and nitrogen species;    Pyocyanin;   
Others  :  792960
DOI  :  10.1186/1465-9921-14-82
 received in 2013-06-11, accepted in 2013-07-23,  发布年份 2013
PDF
【 摘 要 】

Background

The redox-active pyocyanin (PCN) is a toxic, secondary metabolite secreted by the respiratory pathogen Pseudomonas aeruginosa (PA). Previously, we have shown that mouse lungs chronically exposed to PCN develop goblet cell hyperplasia and metaplasia (GCHM) and mucus hypersecretion, fibrosis and emphysema. These pathological features are commonly found in the airways of several chronic lung diseases, including cystic fibrosis (CF), as well as in mouse airways deficient in the forkhead box A2 (FOXA2), a transcriptional repressor of goblet GCHM and mucus biosynthesis. Furthermore, PCN inhibits FOXA2 by activating the pro-GCHM signaling pathways Stat6 and EGFR. However, it is not known whether PCN-generated reactive oxygen (ROS) and nitrogen (RNS) species posttranslationally modify and inactivate FOXA2.

Methods

We examined the posttranslational modifications of FOXA2 by PCN using specific antibodies against oxidation, nitrosylation, acetylation and ubiquitination. Electrophoretic mobility shift assay (EMSA) was used to examine the ability of modified FOXA2 to bind the promoter of MUC5B mucin gene. In addition, we used quantitative real time PCR, ELISA, immunofluorescence and mouse lung infection to assess whether the loss of FOXA2 function caused GCHM and mucin overexpression. Finally, we examined the restoration of FOXA2 function by the antioxidant glutathione (GSH).

Results

We found that PCN-generated ROS/RNS caused nitrosylation, acetylation, ubiquitination and degradation of FOXA2. Modified FOXA2 had reduced ability to bind the promoter of the MUC5B gene. The antioxidant GSH alleviated the modification of FOXA2 by PCN, and inhibited the overexpression of MUC5AC and MUC5B mucins.

Conclusion

These results suggest that PCN-mediated posttranslational modifications of FOXA2 are positively correlated with GCHM and overexpression of airway mucins. Furthermore, antioxidant treatment restores the function of FOXA2 to attenuate GCHM and mucus hypersecretion.

【 授权许可】

   
2013 Hao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705041936382.pdf 1676KB PDF download
Figure 8. 100KB Image download
Figure 7. 72KB Image download
Figure 6. 134KB Image download
Figure 5. 83KB Image download
Figure 4. 96KB Image download
Figure 3. 99KB Image download
Figure 2. 83KB Image download
Figure 1. 102KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Farrell PM, Collins J, Broderick LS, Rock MJ, Li Z, Kosorok MR, Laxova A, Gershan WM, Brody AS: Association between mucoid Pseudomonas infection and bronchiectasis in children with cystic fibrosis. Radiology 2001, 252:534-543.
  • [2]Murphy TF, Brauer AL, Eschberger K, Lobbins P, Grove L, Cai X, Sethi S: Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008, 177:853-860.
  • [3]Zoumot Z, Wilson R: Respiratory infection in noncystic fibrosis bronchiectasis. Curr Opin Infect Dis 2010, 23:165-170.
  • [4]Lau GW, Hassett DJ, Britigan BE: Modulation of lung epithelial functions by Pseudomonas aeruginosa. Trends Microbiol 2005, 13:389-397.
  • [5]Lyczak JB, Cannon CL, Pier GB: Lung infections associated with cystic fibrosis. Clin Microbiol Rev 2002, 15:194-222.
  • [6]Mahenthiralingam E, Campbell ME, Speert DP: Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 1994, 62:596-605.
  • [7]Hancock RE, Mutharia LM, Chan L, Darveau RP, Speert DP, Pier GB: Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect Immun 1983, 42:170-177.
  • [8]Doggett RG: Incidence of mucoid Pseudomonas aeruginosa from clinical sources. Appl Microbiol 1969, 18:936-937.
  • [9]Moreau-Marquis S, Stanton BA, O’Toole GA: Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm Pharmacol Ther 2008, 21:595-599.
  • [10]Pier GB, Matthews WJ, Eardley DD: Immunochemical characterization of the mucoid exopolysaccharide of Pseudomonas aeruginosa. J Infect Dis 1983, 147:494-503.
  • [11]Lau GW, Hassett DJ, Ran H, Kong F: The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 2004, 10:599-606.
  • [12]Wilson R, Sykes DA, Watson D, Rutman A, Taylor GW, Cole PJ: Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun 1988, 56:2515-2517.
  • [13]Palmer KL, Mashburn LM, Singh PK, Whiteley M: Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 2005, 187:5267-5277.
  • [14]Ricciardoloa FLM, Stefanob AD, Sabatinia F, Folkertsc G: Reactive nitrogen species in the respiratory tract. Eur J Pharmacol 2006, 533:240-252.
  • [15]O’Malley YQ, Reszka KJ, Spitz DR, Denning GM, Britigan BE: Pseudomonas aeruginosa pyocyanin directly oxidizes glutathione and decreases its levels in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004, 287:L94-L103.
  • [16]O’Malley YQ, Reszka KJ, Rasmussen GT, Abdalla MY, Denning GM, Britigan BE: The Pseudomonas secretory product pyocyanin inhibits catalase activity in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2003, 285:L1077-L1086.
  • [17]Forteza R, Lauredo I, Burch R, Abraham W: Extracellular metabolites of Pseudomonas aeruginosa produce bronchoconstriction by different mechanisms. Am J Respir Crit Care Med 1994, 149:687-693.
  • [18]Munro NC, Barker A, Rutman A, Taylor G, Watson D, McDonald-Gibson WJ, Towart R, Taylor WA, Wilson R, Cole PJ: Effect of pyocyanin and 1-hydroxyphenazine on in vivo tracheal mucus velocity. J Appl Physiol 1989, 67:316-323.
  • [19]Dormehl I, Ras G, Taylor G, Hugo N: Effect of Pseudomonas aeruginosa-derived pyocyanin and 1-hydroxyphenazine on pulmonary mucociliary clearance monitored scintigraphically in the baboon model. Nucl Med Biol 1991, 18:455-459.
  • [20]Shellito J, Nelson S, Sorensen RU: Effect of pyocyanine, a pigment of Pseudomonas aeruginosa, on production of reactive nitrogen intermediates by murine alveolar macrophages. Infect Immun 1992, 60:3913-3915.
  • [21]Kamath J, Britigan B, Cox C, Shasby M: Pyocyanin from Pseudomonas aeruginosa inhibits prostacyclin release from endothelial cells. Infect Immun 1995, 63:4921-4923.
  • [22]Muller M, Sorrell TC: Leukotriene B4 omega-oxidation by human polymorphonuclear leukocytes is inhibited by pyocyanin, a phenazine derivative produced by Pseudomonas aeruginosa. Infect Immun 1992, 60:2536-2540.
  • [23]Muller M, Sztelma K, Sorrell T: Inhibition of platelet eicosanoid metabolism by the bacterial phenazine derivative pyocyanin. Ann NY Acad Sci 1994, 744:320-322.
  • [24]Nutman J, Berger M, Chase PA, Dearborn DG, Miller KM, Waller RL, Sorensen RU: Studies on the mechanism of T cell inhibition by the Pseudomonas aeruginosa phenazine pigment pyocyanine. J Immunol 1987, 138:3481-3487.
  • [25]Denning G, Railsback M, Rasmussen G, Cox C, Britigan B: Pseudomonas pyocyanine alters calcium signaling in human airway epithelial cells. Am J Physiol 1998, 274:L893-L900.
  • [26]Denning G, Wollenweber L, Railsback M, Cox C, Stoll L, Britigan B: Pseudomonas pyocyanin increases interleukin-8 expression by human airway epithelial cells. Infect Immun 1998, 66:5777-5784.
  • [27]Britigan B, Railsback M, Cox C: The Pseudomonas aeruginosa secretory product pyocyanin inactivates alpha1 protease inhibitor: implications for the pathogenesis of cystic fibrosis lung disease. Infect Immun 1999, 67:1207-1212.
  • [28]Usher L, Lawson R, Geary I, Taylor C, Bingle C, Taylor G, Whyte M: Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection. J Immunol 2002, 168:1861-1868.
  • [29]Look DC, Stoll LL, Romig SA, Humlicek A, Britigan BE, Denning GM: Pyocyanin and its precursor phenazine-1-carboxylic acid increase IL-8 and intercellular adhesion molecule-1 expression in human airway epithelial cells by oxidant-dependent mechanisms. J Immunol 2005, 175:4017-4023.
  • [30]Lau GW, Ran H, Kong FS, Hassett DJ, Mavrodi D: Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun 2004, 72:4275-4278.
  • [31]Caldwell CC, Chen Y, Goetzmann HS, Hao Y, Borchers MT, Hassett DJ, Young LR, Mavrodi D, Thomashow L, Lau GW: Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. Am J Pathol 2009, 175:2473-2488.
  • [32]Wan H, Kaestner KH, Ang SL, Ikegami M, Finkelman FD, Stahlman MT, Fulkerson PC, Rothenberg ME, Whitsett JA: FoxA2 regulates alveolarization and goblet cell hyperplasia. Development 2004, 131:953-964.
  • [33]Hao Y, Kuang ZZ, Walling BE, Bhatia S, Sivaguru M, Chen Y, Gaskins HR, Lau GW: Pseudomonas aeruginosa pyocyanin causes airway goblet cell hyperplasia and metaplasia and mucus hypersecretion by inactivating the transcriptional factor FoxA2. Cell Microbiol 2012, 14:401-415.
  • [34]Lidell ME, Bara J, Hansson GC: Mapping of the 45M1 epitope to the C-terminal cysteine-rich part of the human MUC5AC mucin. FEBS J 2008, 275:481-489.
  • [35]Nollet S, Escande F, Buisine MP, Forgue-Lafitte ME, Kirkham P, Okada Y, Bara J: Mapping of SOMU1 and M1 epitopes on the apomucin encoded by the 5′ end of the MUC5AC gene. Hybrid Hybridomics 2004, 23:93-99.
  • [36]Maker AV, Katabi N, Gonen M, DeMatteo RP, D’Angelica MI, Fong Y, Jarnagin WR, Brennan MF, Allen PJ: Pancreatic cyst fluid and serum mucin levels predict dysplasia in intraductal papillary mucinous neoplasms of the pancreas. Ann Surg Oncol 2011, 18:199-206.
  • [37]Nie YC, Wu H, Li PB, Xie LM, Luo YL, Shen JG, Su WW: Naringin attenuates EGF-induced MUC5AC secretion in A549 cells by suppressing the cooperative activities of MAPKs-AP-1 and IKKs-IκB-NF-κB signaling pathways. Eur J Pharmacol 2012, 690:207-213.
  • [38]Choi YH, Lee SN, Aoyagi H, Yamasaki Y, Yoo JY, Park B, Shin DM, Yoon HG, Yoon JH: The extracellular signal-regulated kinase mitogen-activated protein kinase/ribosomal S6 protein kinase 1 cascade phosphorylates cAMP response element-binding protein to induce MUC5B gene expression via D-prostanoid receptor signaling. J Biol Chem 2011, 286:34199-34214.
  • [39]Moron MS, Depierre JW, Mannervik B: Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 1979, 582:67-78.
  • [40]D’Orazio M, Pacello F, Battistoni A: Extracellular glutathione decreases the ability of Burkholderia cenocepacia to penetrate into epithelial cells and to induce an inflammatory response. PLoS One 2012, 7:e47550.
  • [41]Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI: The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 2007, 113:234-258.
  • [42]Chen G, Wan H, Luo F, Zhang L, Xu Y, Lewkowich I, Wills-Karp M, Whitsett JA: Foxa2 programs Th2 cell mediated innate immunity in the developing lung. J Immunol 2010, 184:6133-6141.
  • [43]Zhen G, Park SW, Nguyenvu LT, Rodriguez MW, Barbeau R, Paquet AC, Erle DJ: IL-13 and epidermal growth factor receptor have critical but distinct roles in epithelial cell mucin production. Am J Respir Cell Mol Biol 2007, 36:244-253.
  • [44]Rose MC, Voynow JA: Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev 2006, 86:245-278.
  • [45]Burgel PR, Montani D, Danel C, Dusser DJ, Nadel JA: A morphometric study of mucins and small airway plugging in cystic fibrosis. Thorax 2007, 62:153-161.
  • [46]Kirkham S, Kolsum U, Rousseau K, Singh D, Vestbo J, Thornton DJ: MUC5B is the major mucin in the gel phase of sputum in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008, 178:1033-1039.
  • [47]Carlsson M, Shukla S, Petersson AC, Segelmark M, Hellmark T: Pseudomonas aeruginosa in cystic fibrosis: pyocyanin negative strains are associated with BPI-ANCA and progressive lung disease. J Cyst Fibros 2011, 10:265-271.
  • [48]Fothergill JL, Panagea S, Hart CA, Walshaw MJ, Pitt TL, Winstanley C: Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain. BMC Microbiol 2007, 7:45. BioMed Central Full Text
  • [49]Mowat E, Paterson S, Fothergill JL, Wright EA, Ledson MJ, Walshaw MJ, Brockhurst MA, Winstanley C: Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am J Respir Crit Care Med 2011, 183:1674-1679.
  • [50]Yan F, Li W, Jono H, Li Q, Zhang S, Li JD, Shen H: Reactive oxygen species regulate Pseudomonas aeruginosa lipopolysaccharide-induced MUC5AC mucin expression via PKC-NADPH oxidase-ROS-TGF-alpha signaling pathways in human airway epithelial cells. Biochem Biophys Res Commun 2008, 366:513-519.
  • [51]Folkerts G, Kloek J, Muijsers BR, Nijkamp FP: Reactive nitrogen and oxygen species in airway inflammation. Eur J Pharmacol 2001, 429:251-262.
  • [52]Starosta V, Griese M: Protein oxidation by chronic pulmonary diseases in children. Pediatr Pulmonol 2006, 41:67-73.
  • [53]Brown RK, McBurney A, Lunec J, Kelly FJ: Oxidative damage to DNA in patients with cystic fibrosis. Free Radic Biol Med 1995, 18:801-806.
  • [54]Witko-Sarsat V, Delacourt C, Rabier D, Bardet J, Nguyen AT, Descamps-Latscha B: Neutrophil-derived long-lived oxidants in cystic fibrosis sputum. Am J Respir Crit Care Med 1995, 152:1910-1916.
  • [55]Shao MX, Nadel JA: Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-alpha-converting enzyme. J Immunol 2005, 175:4009-4016.
  • [56]Rada B, Gardina P, Myers TG, Leto TL: Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to Pseudomonas pyocyanin. Mucosal Immunol 2011, 4:158-171.
  • [57]Griese M, Ramakers J, Krasselt A, Starosta V, van Koningsbruggen S, Fischer R, Ratjen F, Müllinger B, Huber RM, Maier K, Rietschel E: Improvement of alveolar glutathione, lung function, but not oxidative state in cystic fibrosis. Am J Respir Crit Care Med 2004, 169:822-828.
  • [58]Rancourt RC, Tai S, King M, Heltshe SL, Penvari C, Accurso FJ, White CW: Thioredoxin liquefies and decreases the viscoelasticity of cystic fibrosis sputum. Am J Physiol Lung Cell Mol Physiol 2004, 286:L931-L938.
  • [59]Sadowska AM, Manuel-Y-Keenoy B, De Backer WA: Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD:discordant in vitro and in vivo dose-effects: a review. Pulm Pharmacol Ther 2007, 20:9-22.
  • [60]Fujisawa T, Ide K, Holtzman MJ, Suda T, Suzuki K, Kuroishi S, Chida K, Nakamura H: Involvement of the p38 MAPK pathway in IL-13-induced mucous cell metaplasia in mouse tracheal epithelial cells. Respirology 2008, 13:191-202.
  • [61]Seagrave J, Albrecht HH, Hill DB, Rogers DF, Solomon G: Effects of guaifenesin, N-acetylcysteine, and ambroxol on MUC5AC and mucociliary transport in primary differentiated human tracheal-bronchial cells. Respir Res 2012, 13:98. BioMed Central Full Text
  • [62]Malavia NK, Mih JD, Raub CB, Dinh BT, George SC: IL-13 induces a bronchial epithelial phenotype that is profibrotic. Respir Res 2008, 9:27. BioMed Central Full Text
  • [63]Shim JJ, Dabbagh K, Takeyama K, Burgel PR, Dao-Pick TP, Ueki IF, Nadel JA: Suplatast tosilate inhibits goblet-cell metaplasia of airway epithelium in sensitized mice. J Allergy Clin Immunol 2000, 105:739-745.
  • [64]Thai P, Chen Y, Dolganov G, Wu R: Differential regulation of MUC5AC/Muc5ac and hCLCA-1/mGob-5 expression in airway epithelium. Am J Respir Cell Mol Biol 2005, 33:523-530.
  文献评价指标  
  下载次数:0次 浏览次数:2次