期刊论文详细信息
Particle and Fibre Toxicology
Colonisation resistance in the sand fly gut: Leishmania protects Lutzomyia longipalpis from bacterial infection
Rod J Dillon7  Fernando A Genta4  Paul A Bates7  Viv M Dillon3  Reginaldo R Cavalcante2  Waleed S Al Salem5  Kelsilândia Aguiar-Martins1  Hector Diaz-Albiter4  Mauricio RV Sant’Anna6 
[1] Departamento de Parasitologia, ICB/UFMG, Belo Horizonte, Brazil;Parasitologia e Microbiologia, CCS, Universidade Federal do Piauí, Teresina, Piauí, Brazil;Institute of Integrative Biology, University of Liverpool, Liverpool, UK;Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil;Liverpool School of Tropical Medicine, Vector Group, Liverpool, UK;Present Address: Departamento de Parasitologia, ICB/UFMG, Belo Horizonte, Brazil;Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
关键词: Microbiota;    Sand fly;    Serratia;    Pseudozyma;    Asaia;    Lutzomyia;    Leishmania;   
Others  :  1181896
DOI  :  10.1186/1756-3305-7-329
 received in 2014-05-01, accepted in 2014-07-03,  发布年份 2014
PDF
【 摘 要 】

Background

Phlebotomine sand flies transmit the haemoflagellate Leishmania, the causative agent of human leishmaniasis. The Leishmania promastigotes are confined to the gut lumen and are exposed to the gut microbiota within female sand flies. Here we study the colonisation resistance of yeast and bacteria in preventing the establishment of a Leishmania population in sand flies and the ability of Leishmania to provide colonisation resistance towards the insect bacterial pathogen Serratia marcescens that is also pathogenic towards Leishmania.

Methods

We isolated microorganisms from wild-caught and laboratory-reared female Lutzomyia longipalpis, identified as Pseudozyma sp. Asaia sp. and Ochrobactrum intermedium. We fed the females with a sugar meal containing the microorganisms and then subsequently fed them with a bloodmeal containing Leishmania mexicana and recorded the development of the Leishmania population. Further experiments examined the effect of first colonising the sand fly gut with L. mexicana followed by feeding with, Serratia marcescens, an insect bacterial pathogen. The mortality of the flies due to S. marcescens was recorded in the presence and absence of Leishmania.

Results

There was a reduction in the number of flies harbouring a Leishmania population that had been pre-fed with Pseudozyma sp. and Asaia sp. or O. intermedium. Experiments in which L. mexicana colonised the sand fly gut prior to being fed an insect bacterial pathogen, Serratia marcescens, showed that the survival of flies with a Leishmania infection was significantly higher compared to flies without Leishmania infection.

Conclusions

The yeast and bacterial colonisation experiments show that the presence of sand fly gut microorganisms reduce the potential for Leishmania to establish within the sand fly vector. Sand flies infected with Leishmania were able to survive an attack by the bacterial pathogen that would have killed the insect and we concluded that Leishmania may benefit its insect host whilst increasing the potential to establish itself in the sand fly vector. We suggest that the increased ability of the sand fly to withstand a bacterial entomopathogen, due to the presence of the Leishmania, may provide an evolutionary pressure for the maintenance of the Leishmania-vector association.

【 授权许可】

   
2014 Sant’Anna et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150515085409910.pdf 825KB PDF download
Figure 5. 52KB Image download
Figure 4. 70KB Image download
Figure 3. 50KB Image download
Figure 2. 68KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Killick-Kendrick R: The biology and control of phlebotomine sand flies. Clin Dermatol 1999, 17(3):279-289.
  • [2]Ready PD: Biology of phlebotomine sand flies as vectors of disease agents. Annu Rev Entomol 2013, 58(1):227-250.
  • [3]Bates PA: Leishmania sand fly interaction: progress and challenges. Curr Opin Microbiol 2008, 11(4):340-344.
  • [4]Dillon RJ, el Kordy E, Shehata M, Lane RP: The prevalence of a microbiota in the digestive tract of Phlebotomus papatasi. Ann Trop Med Parasitol 1996, 90(6):669-673.
  • [5]Sant'anna MR, Darby AC, Brazil RP, Montoya-Lerma J, Dillon VM, Bates PA, Dillon RJ: Investigation of the bacterial communities associated with females of Lutzomyia sand fly species from South America. PLoS One 2012, 7(8):e42531.
  • [6]Hillesland H, Read A, Subhadra B, Hurwitz I, McKelvey R, Ghosh K, Das P, Durvasula R: Identification of aerobic gut bacteria from the kala azar vector, Phlebotomus argentipes: a platform for potential paratransgenic manipulation of sand flies. Am J Trop Med Hyg 2008, 79(6):881-886.
  • [7]McCarthy CB, Diambra LA, Rivera Pomar RV: Metagenomic analysis of taxa associated with Lutzomyia longipalpis, vector of visceral leishmaniasis, using an unbiased high-throughput approach. PLoS Negl Trop Dis 2011, 5(9):e1304.
  • [8]Volf P, Kiewegova A, Nemec A: Bacterial colonisation in the gut of Phlebotomus duboscqi (Diptera : Psychodidae): transtadial passage and the role of female diet. Folia Parasitol 2002, 49(1):73-77.
  • [9]Lawley TD, Walker AW: Intestinal colonization resistance. Immunology 2013, 138(1):1-11.
  • [10]Dillon RJ, Dillon VM: The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 2004, 49:71-92.
  • [11]Azambuja P, Garcia ES, Ratcliffe NA: Gut microbiota and parasite transmission by insect vectors. Trends Parasitol 2005, 21(12):568.
  • [12]Castro DP, Moraes CS, Gonzalez MS, Ratcliffe NA, Azambuja P, Garcia ES: Trypanosoma cruzi immune response modulation decreases microbiota in Rhodnius prolixus gut and Is crucial for parasite survival and development. PLoS One 2012, 7(5):e36591.
  • [13]Wang J, Weiss BL, Aksoy S: Tsetse fly microbiota: form and function. Frontiers in cellular and infection microbiology 2013, 3.
  • [14]Cirimotich CM, Ramirez JL, Dimopoulos G: Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe 2011, 10(4):307-310.
  • [15]Schlein Y, Polacheck I, Yuval B: Mycoses, bacterial infections and antibacterial activity in sandifies (Psychodidae) and their possible role in the transmission of leishmaniasis. Parasitology 1985, 90(01):57-66.
  • [16]Casanova C, Natal D, Santos FAM: Survival, population size, and gonotrophic cycle duration of Nyssomyia neivai (Diptera: Psychodidae) at an endemic area of American cutaneous leishmaniasis in southeastern Brazil. J Med Entomol 2009, 46(1):42-50.
  • [17]Rogers ME, Ilg T, Nikolaev AV, Ferguson MAJ, Bates PA: Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature 2004, 430(6998):463-467.
  • [18]Rogers ME, Bates PA: Leishmania manipulation of sand fly feeding behavior results in enhanced transmission. Plos Pathogens 2007, 3:818-825.
  • [19]Dillon RJ, Lane RP: Influence of Leishmania infection on blood-meal digestion in the sandflies Phlebotomus papatasi and Phlebotomus langeroni. Parasitol Res 1993, 79(6):492-496.
  • [20]Sant'Anna M, Diaz-Albiter H, Mubaraki M, Dillon R, Bates P: Inhibition of trypsin expression in Lutzomyia longipalpis using RNAi enhances the survival of Leishmania. Parasit Vectors 2009, 2(1):62.
  • [21]Telleria EL, Pitaluga AN, Ortigao-Farias JR, de Araujo AP, Ramalho-Ortigao JM, Traub-Cseko YM: Constitutive and blood meal-induced trypsin genes in Lutzomyia longipalpis. Arch Insect Biochem Physiol 2007, 66(2):53-63.
  • [22]Rogers ME, Hajmova M, Joshi MB, Sadlova J, Dwyer DM, Volf P, Bates PA: Leishmania chitinase facilitates colonization of sand fly vectors and enhances transmission to mice. Cell Microbiol 2008, 10(6):1363-1372.
  • [23]Telleria EL, Sant'Anna MR, Ortigao-Farias JR, Pitaluga AN, Dillon VM, Bates PA, Traub-Cseko YM, Dillon RJ: Caspar-like gene depletion reduces Leishmania infection in sand fly host Lutzomyia longipalpis. J Biol Chem 2012, 287(16):12985-12993.
  • [24]Harhay MO, Olliaro PL, Costa DL, Costa CH: Urban parasitology: visceral leishmaniasis in Brazil. Trends Parasitol 2011, 27(9):403-409.
  • [25]Moraes CS, Seabra SH, Castro DP, Brazil RP, de Souza W, Garcia ES, Azambuja P: Leishmania (Leishmania) chagasi interactions with Serratia marcescens: ultrastructural studies, lysis and carbohydrate effects. Exp Parasitol 2008, 118(4):561-568.
  • [26]Modi GB, Tesh RB: A simple technique for mass rearing Lutzomyia longipalpis and Phlebotomus papatasi (Diptera: Psychodidae) in the laboratory. J Med Entomol 1983, 20(5):568-569.
  • [27]Webster G, Parkes RJ, Cragg BA, Newberry CJ, Weightman AJ, Fry JC: Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol Ecol 2006, 58(1):65-85.
  • [28]Kurtzman C, Robnett C: Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 1998, 73(4):331-371.
  • [29]Sant'Anna MRV, Alexander B, Bates PA, Dillon RJ: Gene silencing in phlebotomine sand flies: Xanthine dehydrogenase knock down by dsRNA micro-injections. Insect Biochem Mol Biol 2008, 38(6):652-660.
  • [30]Nicolas LPE, Lang T, Milon G: Real-time PCR for detection and quantitation of Leishmania in mouse tissues. J Clin Microbiol 2002, 40(4):1666-1669.
  • [31]Nadkarni MA, Martin FE, Jacques NA, Hunter N: Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiol 2002, 148(1):257-266.
  • [32]Gouveia C, Asensi MD, Zahner V, Rangel EF, Oliveira SM: Study on the bacterial midgut microbiota associated to different Brazilian populations of Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae). Neotrop Entomol 2008, 37(5):597-601.
  • [33]Murray HW, Berman JD, Davies CR, Saravia NG: Advances in leishmaniasis. Lancet 2005, 366(9496):1561-1577.
  • [34]Rangel EF, Lainson R: Proven and putative vectors of American cutaneous leishmaniasis in Brazil: aspects of their biology and vectorial competence. Mem Inst Oswaldo Cruz 2009, 104(7):937-954.
  • [35]Felipe IM AD, Kuppinger O, Santos MD, Rangel ME, Barbosa DS, Barral A, Werneck GL, Caldas Ade J: Leishmania infection in humans, dogs and sandflies in a visceral leishmaniasis endemic area in Maranhão, Brazil. Mem Inst Oswaldo Cruz 2011, 106(2):207-211.
  • [36]Akhoundi M, Bakhtiari R, Guillard T, Baghaei A, Tolouei R, Sereno D, Toubas D, Depaquit J, Abyaneh MR: Diversity of the bacterial and fungal microflora from the midgut and cuticle of Phlebotomine sand flies collected in North-Western Iran. PLoS One 2012, 7(11):e50259.
  • [37]Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, Rizzi A, Urso R, Brusetti L, Borin S, Mora D, Scuppa P, Pasqualini L, Clementi E, Genchi M, Corona S, Negri I, Grandi G, Alma A, Kramer L, Esposito F, Bandi C, Sacchi L, Daffonchio D: Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci U S A 2007, 104(21):9047-9051.
  • [38]Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, Capone A, Ulissi U, Epis S, Genchi M, Sagnon N, Faye I, Kang A, Chouaia B, Whitehorn C, Moussa GW, Mandrioli M, Esposito F, Sacchi L, Bandi C, Daffonchio D, Favia G: Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb Ecol 2010, 60(3):644-654.
  • [39]Crotti E, Damiani C, Pajoro M, Gonella E, Rizzi A, Ricci I, Negri I, Scuppa P, Rossi P, Ballarini P, Raddadi N, Marzorati M, Sacchi L, Clementi E, Genchi M, Mandrioli M, Bandi C, Favia G, Alma A, Daffonchio D: Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. Environ Microbiol 2009, 11(12):3252-3264.
  • [40]Wei YH, Lee FL, Hsu WH, Chen SR, Chen CC, Wen CY, Lin SJ, Chu WS, Yuan GF, Liou GY: Pseudozyma antarctica in Taiwan: a description based on morphological, physiological and molecular characteristics. Bot Bull Acad Sin 2005, 46(3):223-229.
  • [41]Dillon RJ, Vennard CT, Buckling A, Charnley AK: Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett 2005, 8(12):1291-1298.
  • [42]Moll RM, Romoser WS, Modrzakowski MC, Moncayo AC, Lerdthusnee K: Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J Med Entomol 2001, 38(1):29-32.
  • [43]Dong Y, Manfredini F, Dimopoulos G: Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 2009, 5(5):e1000423.
  • [44]Diaz-Albiter H, Sant'Anna MR, Genta FA, Dillon RJ: Reactive oxygen species-mediated immunity against Leishmania mexicana and Serratia marcescens in the sand phlebotomine fly Lutzomyia longipalpis. J Biol Chem 2012, 287(28):23995-24003.
  • [45]Gendrin M, Christophides GK: The Anopheles Mosquito Microbiota and Their Impact on Pathogen Transmission. In Anopheles mosquitoes - New insights into malaria vectors. Edited by Manguin S. Croatia: InTech Europe; 2013. DOI: 10.5772/55107
  • [46]Cirimotich CM, Dong YM, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, Dimopoulos G: Natural Microbe-Mediated Refractoriness to Plasmodium Infection in Anopheles gambiae. Science 2011, 332(6031):855-858.
  • [47]Cirimotich CM, Dong Y, Garver LS, Sim S, Dimopoulos G: Mosquito immune defenses against Plasmodium infection. Dev Comp Immunol 2010, 34(4):387-395.
  • [48]Dillon RJ, Charnley AK: Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol 2002, 153(8):503-509.
  • [49]Buxdorf K, Rahat I, Gafni A, Levy M: The epiphytic fungus Pseudozyma aphidis induces jasmonic acid-and salicylic acid/nonexpressor of PR1-independent local and systemic resistance. Plant Physiol 2013, 161(4):2014-2022.
  • [50]Soares MR, Carvalho CC, Silva LA, Lima MS, Barral AM, Rebelo JM, Pereira SR: Molecular analysis of natural infection of Lutzomyia longipalpis in an endemic area for visceral leishmaniasis in Brazil. Cad Saude Publ 2010, 26(12):2409-2413.
  文献评价指标  
  下载次数:55次 浏览次数:5次