期刊论文详细信息
Particle and Fibre Toxicology
Candidatus Neoehrlichia mikurensis in rodents in an area with sympatric existence of the hard ticks Ixodes ricinus and Dermacentor reticulatus, Germany
Martin Pfeffer1  Kurt Pfister3  Monia Mahling2  Dietlinde Woll1  Cornelia Silaghi3 
[1] Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany;Statistical Consulting Unit, Department of Statistics, Ludwig-Maximilians-Universität München, Munich, Germany;Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Leopoldstr. 5, D-80802, Munich, Germany
关键词: Vector-host relation;    Host survey;    Recreational area;    Dermacentor reticulatus;    Ixodes ricinus;    Yellow-necked mouse;    Bank vole;    Candidatus Neoehrlichia mikurensis;   
Others  :  1228815
DOI  :  10.1186/1756-3305-5-285
 received in 2012-10-15, accepted in 2012-12-02,  发布年份 2012
PDF
【 摘 要 】

Background

Candidatus Neoehrlichia mikurensis (CNM) has been described in the hard tick Ixodes ricinus and rodents as well as in some severe cases of human disease. The aims of this study were to identify DNA of CNM in small mammals, the ticks parasitizing them and questing ticks in areas with sympatric existence of Ixodes ricinus and Dermacentor reticulatus in Germany.

Methods

Blood, transudate and organ samples (spleen, kidney, liver, skin) of 91 small mammals and host-attached ticks from altogether 50 small mammals as well as questing I. ricinus ticks (n=782) were screened with a real-time PCR for DNA of CNM.

Results

52.7% of the small mammals were positive for CNM-DNA. The majority of the infected animals were yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus). Small mammals with tick infestation were more often infected with CNM than small mammals without ticks. Compared with the prevalence of ~25% in the questing I. ricinus ticks, twice the prevalence in the rodents provides evidence for their role as reservoir hosts for CNM.

Conclusion

The high prevalence of this pathogen in the investigated areas in both rodents and ticks points towards the need for more specific investigation on its role as a human pathogen.

【 授权许可】

   
2012 Silaghi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20151019081127417.pdf 214KB PDF download
【 参考文献 】
  • [1]Goeijenbier M, Wagenaar J, Goris M, Martina B, Henttonen H, Vaheri A, Reusken C, Hartskeerl R, Osterhaus A, Van Gorp E: Rodent-borne hemorrhagic fevers: under-recognized, widely spread and preventable - epidemiology, diagnostics and treatment. Crit Rev Microbiol 2012. epub June 7th, 2012
  • [2]Bolzoni L, Rosà R, Cagnacci F, Rizzoli A: Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II: population and infection models. Int J Parasitol 2012, 42:373-381.
  • [3]Karbowiak G: Zoonotic reservoir of Babesia microti in Poland. Pol J Microbiol 2004, 53(Suppl):61-65.
  • [4]Hillyard PD: Ticks of North-West Europe. Dorchester: The Dorset Press; 1996.
  • [5]Oliver JH, Lin T, Gao L, Clark KL, Banks CW, Durden LA, James AM, Chandler FW: An enzootic transmission cycle of Lyme borreliosis spirochetes in the southeastern United States. Proc Natl Acad Sci 2003, 100:11642-11645.
  • [6]Bown KJ, Begon M, Bennett M, Birtles RJ, Burthe S, Lambin X, Telfer S, Woldehiwet Z, Ogden NH: Sympatric Ixodes trianguliceps and Ixodes ricinus ticks feeding on field voles (Microtus agrestis): potential for increased risk of Anaplasma phagocytophilum in the United Kingdom? Vector Borne Zoonotic Dis 2006, 6:404-410.
  • [7]Bown KJ, Lambin X, Telford GR, Ogden NH, Telfer S, Woldehiwet Z, Birtles RJ: Relative importance of Ixodes ricinus and Ixodes trianguliceps as vectors for Anaplasma phagocytophilum and Babesia microti in field vole (Microtus agrestis) populations. Appl Environ Microbiol 2008, 74:7118-7125.
  • [8]Randolph SE: Quantifying parameters in the transmission of Babesia microti by the tick Ixodes trianguliceps amongst voles (Clethrionomys glareolus). Parasitology 1995, 110(Pt 3):287-295.
  • [9]Schouls LM, Van De Pol I, Rijpkema SG, Schot CS: Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks. J Clin Microbiol 1999, 37:2215-2222.
  • [10]Pan HUA, Liu S, Ma Y, Tong S, Sun Y: Ehrlichia-like organism gene found in small mammals in the Suburban district of Guangzhou of China. Ann N Y Acad Sci 2003, 990:107-111.
  • [11]Sanogo YO, Parola P, Shpynov S, Camicas JL, Brouqui P, Caruso G, Raoult D: Genetic diversity of bacterial agents detected in ticks removed from asymptomatic patients in northeastern Italy. Ann N Y Acad Sci 2003, 990:182-190.
  • [12]Kawahara M, Rikihisa Y, Isogai E, Takahashi M, Misumi H, Suto C, Shibata S, Zhang C, Tsuji M: Ultrastructure and phylogenetic analysis of ‘Candidatus Neoehrlichia mikurensis' in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks. Int J Syst Evol Microbiol 2004, 54:1837-1843.
  • [13]Jahfari S, Fonville M, Hengeveld P, Reusken C, Scholte EJ, Takken W, Heyman P, Medlock J, Heylen D, Kleve J, Sprong H: Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west Europe. Parasit Vectors 2012, 5:74. BioMed Central Full Text
  • [14]Rar V, Golovljová I: Anaplasma, Ehrlichia, and "Candidatus Neoehrlichia" bacteria: pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infect Genet Evol 2011, 11:1842-1861.
  • [15]Yabsley MJ, Murphy SM, Luttrell MP, Wilcox BR, Ruckdeschel C: Raccoons (Procyon lotor), but not rodents, are natural and experimental hosts for an ehrlichial organism related to “Candidatus Neoehrlichia mikurensis”. Vet Microbiol 2008, 131:301-308.
  • [16]Munderloh UG, Yabsley MJ, Murphy SM, Luttrell MP, Howerth EW: Isolation and establishment of the raccoon Ehrlichia-like agent in tick cell culture. Vector Borne Zoonotic Dis 2007, 7:418-425.
  • [17]Diniz PP, Schulz BS, Hartmann K, Breitschwerdt EB: "Candidatus Neoehrlichia mikurensis" infection in a dog from Germany. J Clin Microbiol 2011, 49:2059-2062.
  • [18]Fehr JS, Bloemberg GV, Ritter C, Hombach M, Luscher TF, Weber R, Keller PM: Septicemia caused by tick-borne bacterial pathogen Candidatus Neoehrlichia mikurensis. Emerg Infect Dis 2010, 16:1127-1129.
  • [19]Peková S, Vydra J, Kabicková H, Franková S, Haugvicova R, Mazal O, Cmejla R, Hardekopf DW, Jancuskova T, Kozak T: Candidatus Neoehrlichia mikurensis infection identified in 2 hematooncologic patients: benefit of molecular techniques for rare pathogen detection. Diagn Microbiol Infect Dis 2011, 69:266-270.
  • [20]Von Loewenich FD, Geissdorfer W, Disque C, Matten J, Schett G, Sakka SG, Bogdan C: Detection of "Candidatus Neoehrlichia mikurensis" in two patients with severe febrile illnesses: evidence for a European sequence variant. J Clin Microbiol 2010, 48:2630-2635.
  • [21]Welinder-Olsson C, Kjellin E, Vaht K, Jacobsson S, Wenneras C: First case of human "Candidatus Neoehrlichia mikurensis" infection in a febrile patient with chronic lymphocytic leukemia. J Clin Microbiol 2010, 48:1956-1959.
  • [22]Fertner ME, Molbak L, Boye Pihl TP, Fomsgaard A, Bodker R: First detection of tick-borne "Candidatus Neoehrlichia mikurensis" in Denmark 2011. Euro Surveill 2012, 17(8):pii=20096.
  • [23]Richter D, Matuschka FR: "Candidatus Neoehrlichia mikurensis," Anaplasma phagocytophilum, and lyme disease spirochetes in questing european vector ticks and in feeding ticks removed from people. J Clin Microbiol 2012, 50:943-947.
  • [24]Silaghi C, Hamel D, Thiel C, Pfister K, Pfeffer M: Spotted fever group rickettsiae in ticks, Germany. Emerg Infect Dis 2011, 17:890-892.
  • [25]Silaghi C, Woll D, Hamel D, Pfister K, Mahling M, Pfeffer M: Babesia spp. and Anaplasma phagocytophilum in questing ticks, ticks parasitizing rodents and the parasitized rodents - Analyzing the host-pathogen-vector interface in a metropolitan area. Parasit Vectors 2012, 5:191. BioMed Central Full Text
  • [26]Team RDC: R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2011.
  • [27]Hothorn T, Bretz F, Westfall P: Simultaneous inference in general parametric models. Biom J 2008, 50:346-363.
  • [28]Beninati T, Piccolo G, Rizzoli A, Genchi C, Bandi C: Anaplasmataceae in wild rodents and roe deer from Trento Province (northern Italy). EurJ Clin Microbiol Infect Dis 2006, 25:677-678.
  • [29]Andersson M, Raberg L: Wild rodents and novel human pathogen Candidatus Neoehrlichia mikurensis, Southern Sweden. Emerg Infect Dis 2011, 17:1716-1718.
  • [30]Rar VA, Livanová NN, Panov VV, Doroschenko EK, Pukhovskaya NM, Vysochina NP, Ivanov LI: Genetic diversity of Anaplasma and Ehrlichia in the Asian part of Russia. Ticks Tick Borne Dis 2010, 1:57-65.
  • [31]Pan L, Zhang L, Wang G, Liu Q, Yu Y, Wang S, Yu H, He J: Rapid, simple, and sensitive detection of Anaplasma phagocytophilum by loop-mediated isothermal amplification of the msp2 gene. J Clin Microbiol 2011, 49:4117-4120.
  • [32]Arthur DR: Ticks - A monograph of the Ixodoidea. London, UK: Cambridge University Press; 1960.
  • [33]Grzeszczuk A, Stanczak J: Highly variable year-to-year prevalence of Anaplasma phagocytophilum in Ixodes ricinus ticks in northeastern Poland: a 4-year follow-up. Ann N Y Acad Sci 2006, 1078:309-311.
  • [34]Richter D, Kohn C, Matuschka FR: Absence of Borrelia spp., Candidatus Neoehrlichia mikurensis, and Anaplasma phagocytophilum in questing adult Dermacentor reticulatus ticks. Parasitol Res 2012. epub 8 Sep
  • [35]van Overbeek L, Gassner F, van der Plas CL, Kastelein P, Nunes-da Rocha U, Takken W: Diversity of Ixodes ricinus tick-associated bacterial communities from different forests. FEMS Microbiol Ecol 2008, 66:72-84.
  • [36]Capelli G, Ravagnan S, Montarsi F, Ciocchetta S, Cazzin S, Porcellato E, Babiker AM, Cassini R, Salviato A, Cattoli G, Otranto D: Occurrence and identification of risk areas of Ixodes ricinus-borne pathogens: a cost-effectiveness analysis in north-eastern Italy. Parasit Vectors 2012, 5:61. BioMed Central Full Text
  • [37]Lommano E, Bertaiola L, Dupasquier C, Gern L: Infections and co-infections of questing Ixodes ricinus ticks by emerging zoonotic pathogens in Western Switzerland. Appl Environ Microbiol 2012. epub 24 Apr
  • [38]Alekseev AN, Dubinina HV, Van De Pol I, Schouls LM: Identification of Ehrlichia spp. and Borrelia burgdorferi in Ixodes ticks in the Baltic regions of Russia. J Clin Microbiol 2001, 39:2237-2242.
  • [39]Von Loewenich FD, Baumgarten BU, Schröppel K, Geissdörfer W, Röllinghoff M, Bogdan C: High diversity of ankA sequences of Anaplasma phagocytophilum among Ixodes ricinus ticks in Germany. J Clin Microbiol 2003, 41:5033-5040.
  • [40]Wielinga PR, Gaasenbeek C, Fonville M, de Boer A, de Vries A, Dimmers W, Akkerhuis Op Jagers G, Schouls LM, Borgsteede F, van der Giessen JW: Longitudinal analysis of tick densities and Borrelia, Anaplasma, and Ehrlichia infections of Ixodes ricinus ticks in different habitat areas in The Netherlands. Appl Environ Microbiol 2006, 72:7594-7601.
  • [41]Špitalská E, Boldis V, Kostanová Z, Kocianová E, Stefanidesová K: Incidence of various tick-borne microorganisms in rodents and ticks of central Slovakia. Acta Virol 2008, 52:175-179.
  • [42]Rar VA, Fomenko NV, Dobrotvorsky AK, Livanova NN, Rudakova SA, Fedorov EG, Astanin VB, Morozova OV: Tickborne pathogen detection, Western Siberia, Russia. Emerg Infect Dis 2005, 11:1708-1715.
  • [43]Shpynov S, Fournier P-E, Rudakov N, Tarasevich I, Raoult D: Detection of members of the genera rickettsia, anaplasma, and ehrlichia in ticks collected in the asiatic part of Russia. Ann N Y Acad Sci 2006, 1078:378-383.
  • [44]Schex S, Dobler G, Riehm J, Müller J, Essbauer S: Rickettsia spp. in wild small mammals in Lower Bavaria, South-Eastern Germany. Vector Borne Zoonotic Dis 2011, 11:493-502.
  • [45]Woldehiwet Z: The natural history of Anaplasma phagocytophilum. Vet Parasitolol 2010, 167:108-122.
  文献评价指标  
  下载次数:16次 浏览次数:7次