期刊论文详细信息
Radiation Oncology
Increased Artemis levels confer radioresistance to both high and low LET radiation exposures
Janice M Pluth2  Steven M Yannone2  Misako Kawahara2  Francis A Cucinotta1  Donna Almendrala2  Mary K Whalen2  Deepa M Sridharan2 
[1] NASA, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, USA;Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
关键词: High LET radiation;    Radioresistance;    Artemis;   
Others  :  1160820
DOI  :  10.1186/1748-717X-7-96
 received in 2012-01-21, accepted in 2012-05-18,  发布年份 2012
【 摘 要 】

Background

Artemis has a defined role in V(D)J recombination and has been implicated in the repair of radiation induced double-strand breaks. However the exact function(s) of Artemis in DNA repair and its preferred substrate(s) in vivo remain undefined. Our previous work suggests that Artemis is important for the repair of complex DNA damage like that inflicted by high Linear Energy Transfer (LET) radiation. To establish the contribution of Artemis in repairing DNA damage caused by various radiation qualities, we evaluated the effect of over-expressing Artemis on cell survival, DNA repair, and cell cycle arrest after exposure to high and low LET radiation.

Results

Our data reveal that Artemis over-expression confers marked radioprotection against both types of radiation, although the radioprotective effect was greater following high LET radiation. Inhibitor studies reveal that the radioprotection imparted by Artemis is primarily dependent on DNA-PK activity, and to a lesser extent on ATM kinase activity. Together, these data suggest a DNA-PK dependent role for Artemis in the repair of complex DNA damage.

Conclusions

These findings indicate that Artemis levels significantly influence radiation toxicity in human cells and suggest that Artemis inhibition could be a practical target for adjuvant cancer therapies.

【 授权许可】

   
2012 Sridharan et al; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 1. 20KB Image download
Figure 6. 54KB Image download
Figure 5. 46KB Image download
Figure 4. 44KB Image download
Figure 3. 30KB Image download
Figure 2. 109KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 1.

【 参考文献 】
  • [1]Li L, Moshous D, Zhou Y, Wang J, Xie G, Salido E, Hu D, de Villartay JP, Cowan MJ: A founder mutation in Artemis, an SNM1-like protein, causes SCID in Athabascan-speaking Native Americans. J Immunol 2002, 168(12):6323-6329.
  • [2]Kobayashi N, Agematsu K, Sugita K, Sako M, Nonoyama S, Yachie A, Kumaki S, Tsuchiya S, Ochs HD, Fukushima Y, et al.: Novel Artemis gene mutations of radiosensitive severe combined immunodeficiency in Japanese families. Hum Genet 2003, 112(4):348-352.
  • [3]Anderson CW, Carter TH: The DNA-activated protein kinase – DNA- PK. Curr Top Microbiol Immunol 1996, 217:91-111.
  • [4]Goodarzi AA, Yu Y, Riballo E, Douglas P, Walker SA, Ye R, Harer C, Marchetti C, Morrice N, Jeggo PA, et al.: DNA-PK autophosphorylation facilitates Artemis endonuclease activity. EMBO J 2006, 25(16):3880-3889.
  • [5]Rooney S, Alt FW, Lombard D, Whitlow S, Eckersdorff M, Fleming J, Fugmann S, Ferguson DO, Schatz DG, Sekiguchi J: Defective DNA repair and increased genomic instability in Artemis-deficient murine cells. J Exp Med 2003, 197(5):553-565.
  • [6]Jolly CJ, Cook AJ, Manis JP: Fixing DNA breaks during class switch recombination. J Exp Med 2008, 205(3):509-513.
  • [7]Franco S, Murphy MM, Li G, Borjeson T, Boboila C, Alt FW: DNA-PKcs and Artemis function in the end-joining phase of immunoglobulin heavy chain class switch recombination. J Exp Med 2008, 205(3):557-564.
  • [8]Drouet J, Frit P, Delteil C, de Villartay JP, Salles B, Calsou P: Interplay between Ku, Artemis, and the DNA-dependent protein kinase catalytic subunit at DNA ends. J Biol Chem 2006, 281(38):27784-27793.
  • [9]Merkle D, Douglas P, Moorhead GB, Leonenko Z, Yu Y, Cramb D, Bazett-Jones DP, Lee-Miller SP: The DNA-dependent protein kinase interacts with DNA to form a protein-DNA complex that is disrupted by phosphorylation. Biochemistry 2002, 41(42):12706-12714.
  • [10]Yannone SM, Khan I, Zhou RZ, Zhou T, Valerie K, Povirk LF: Coordinate 5′ and 3′ endonucleolytic trimming of terminally blocked blunt DNA double-strand break ends by Artemis nuclease and DNA- dependent protein kinase. Nucleic Acids Res 2008, 36(10):3354-3365.
  • [11]Povirk LF, Zhou T, Zhou R, Cowan MJ, Yannone SM: Processing of 3′-phosphoglycolate-terminated DNA double strand breaks by Artemis nuclease. J Biol Chem 2007, 282(6):3547-3558.
  • [12]Geng L, Zhang X, Zheng S, Legerski RJ: Artemis links ATM to G2/M checkpoint recovery via regulation of Cdk1-cyclin B. Mol Cell Biol 2007, 27(7):2625-2635.
  • [13]Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ, Reis C, Dahm K, Fricke A, Krempler A, et al.: A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 2004, 16(5):715-724.
  • [14]Zhang X, Succi J, Feng Z, Prithivirajsingh S, Story MD, Legerski RJ: Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response. Mol Cell Biol 2004, 24(20):9207-9220.
  • [15]Ma Y, Schwarz K, Lieber MR: The Artemis: DNA-PKcs endonuclease cleaves DNA loops, flaps, and gaps. DNA Repair (Amst) 2005, 4(7):845-851.
  • [16]Wang J, Pluth JM, Cooper PK, Cowan MJ, Chen DJ, Yannone SM: Artemis deficiency confers a DNA double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression. DNA Repair (Amst) 2005, 4(5):556-570.
  • [17]Poinsignon C, de Chasseval R, Soubeyrand S, Moshous D, Fischer A, Hache RJ, de Villartay JP: Phosphorylation of Artemis following irradiation-induced DNA damage. Eur J Immunol 2004, 34(11):3146-3155.
  • [18]Multhaup M, Karlen A, Swanson DL, Wilber A, Somia NV, Cowan MJ, McIvor RS: Cytotoxicity associated with artemis overexpression after lentiviral vector-mediated gene transfer. Hum Gene Ther 2010, 21(7):865-875.
  • [19]Xiao Z, Dunn E, Singh K, Khan IS, Yannone SM, Cowan MJ: A non-leaky Artemis-deficient mouse that accurately models the human severe combined immune deficiency phenotype, including resistance to hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2009, 15(1):1-11.
  • [20]Xiao Z, Yannone SM, Dunn E, Cowan MJ: A novel missense RAG-1 mutation results in T-B-NK+ SCID in Athabascan-speaking Dine Indians from the Canadian Northwest Territories. Eur J Hum Genet 2009, 17(2):205-212.
  • [21]Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM: DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998, 273(10):5858-5868.
  • [22]Redon CE, Dickey JS, Bonner WM, Sedelnikova OA: gamma-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Adv Space Res 2009, 43(8):1171-1178.
  • [23]Whalen MK, Gurai S, Zahed-Kargaran H, Pluth JM: Specific ATM-mediated phosphorylation dependent on radiation quality. Radiat Res 2008, 170(3):353-364.
  • [24]Ismail IH, Wadhra TI, Hammarsten O: An optimized method for detecting gamma-H2AX in blood cells reveals a significant interindividual variation in the gamma-H2AX response among humans. Nucleic Acids Res 2007, 35(5):e36.
  • [25]Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI, Reaper PM, Jackson SP, Curtin NJ, Smith GC: Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 2004, 64(24):9152-9159.
  • [26]Veuger SJ, Curtin NJ, Richardson CJ, Smith GC, Durkacz BW: Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNA-dependent protein kinase and poly(ADP-ribose) polymerase-1. Cancer Res 2003, 63(18):6008-6015.
  • [27]Rothkamm K, Kruger I, Thompson LH, Lobrich M: Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 2003, 23(16):5706-5715.
  • [28]Jeggo PA, Lobrich M: Artemis links ATM to double strand break rejoining. Cell Cycle 2005, 4(3):359-362.
  • [29]Brunton H, Goodarzi AA, Noon AT, Shrikhande A, Hansen RS, Jeggo PA, Shibata A: Analysis of human syndromes with disordered chromatin reveals the impact of heterochromatin on the efficacy of ATM-dependent G2/M checkpoint arrest. Mol Cell Biol 2011, 31(19):4022-4035.
  • [30]Jeggo P, O’Neill P: The Greek Goddess, Artemis, reveals the secrets of her cleavage. DNA Repair (Amst) 2002, 1(9):771-777.
  • [31]Okayasu R, Okada M, Okabe A, Noguchi M, Takakura K, Takahashi S: Repair of DNA damage induced by accelerated heavy ions in mammalian cells proficient and deficient in the non-homologous end-joining pathway. Radiat Res 2006, 165(1):59-67.
  • [32]Chen L, Morio T, Minegishi Y, Nakada S, Nagasawa M, Komatsu K, Chessa L, Villa A, Lecis D, Delia D, et al.: Ataxia-telangiectasia-mutated dependent phosphorylation of Artemis in response to DNA damage. Cancer Sci 2005, 96(2):134-141.
  文献评价指标  
  下载次数:20次 浏览次数:12次