Molecular Cytogenetics | |
A novel insertion ins(18;5)(q21.1;q31.2q35.1) in acute myeloid leukemia associated with microdeletions at 5q31.2, 5q35.1q35.2 and 18q12.3q21.1 detected by oligobased array comparative genomic hybridization | |
Eigil Kjeldsen1  | |
[1] Department of Hematology, HemoDiagnostic Laboratory, Cancer Cytogenetics Section, Aarhus University Hospital, Tage-Hansens Gade 2, Ent. 4A, Aarhus C, DK-8000, Denmark | |
关键词: add(18q); del(5q); Cryptic chromosomal aberration; Microdeletion; Chromosomal insertion; oaCGH analysis; 5); ins(18; Acute myeloid leukemia; | |
Others : 1149765 DOI : 10.1186/s13039-014-0063-x |
|
received in 2014-07-18, accepted in 2014-08-28, 发布年份 2014 | |
【 摘 要 】
Background
Nonrandom clonal chromosomal aberrations can be detected in approximately 55% of adult patients with acute myeloid leukemia (AML). Recurrent cytogenetic abnormalities play an important role in diagnosis, classification and prognosis of AML. However, several chromosomal abnormalities have not been completely determined or characterized, primarily because of their low incidence and limited amount of data.
Results
We characterized an AML patient with a novel apparently balanced insertion ins(18;5)(q21;q31.2q35.1) that was cryptic by G-banding. The rearrangement was further examined by molecular cytogenetic methods and oligobased high-resolution array CGH (oaCGH) analysis. We show that an approximately 31.8 Mb large segment from chromosome 5 bands q31.2 to q35.1 has been inserted, by a direct mechanism, into chromosome 18 between bands q12.3 and q21.1. The insertion was unbalanced with concurrent submicroscopic deletions at 5q31.2 (approximately 0.37 Mb in size), 5q35.1q35.2 (approximately 1.98 Mb in size), and 18q12.3q21.1 (approximately 2.07 Mb in size). The microdeletions affect genes on 5q and 18q that have been associated with hematological malignancy and other cancers. A novel juxtaposition of the genes NPM1 and HAUS1 at 5q35.1 and 18q21.1, respectively, was detected by FISH analysis. Searching the literature and the Mitelman database revealed no previously reported ins(18;5) cases. Interestingly, however, two AML patients with translocation t(5;18)(q35;q21) encompassing the 5q35 and 18q21 breakpoint regions as detected in our present ins(18;5) patient have been reported.
Conclusions
It is well-known that cytogenetic abnormalities on the long arm of chromosome 5 affect hematopoiesis. However, the precise mechanism of their involvement in myeloid transformation is elusive. Our present data shed new light onto the frequent abnormalities on 5q as well as to the less frequent abnormalities observed on 18q in myeloid malignancies. In addition, we show that oaCGH analysis is a useful adjunct to revealing submicroscopic aberrations in regions of clinical importance. Reporting rare and nonrandom chromosomal abnormalities contribute to the identification of the whole spectrum of cytogenetic abnormalities in AML and their prognostic significance.
【 授权许可】
2014 Kjeldsen; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150405100357586.pdf | 2065KB | download | |
Figure 4. | 46KB | Image | download |
Figure 3. | 35KB | Image | download |
Figure 2. | 64KB | Image | download |
Figure 1. | 30KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1][http://cgap.nci.nih.gov/Chromosomes/Mitelman] webcite Mitelman F, Johansson B, Mertens FE: Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer (2014). Last update: May 13, 2014..
- [2]Kayser S, Zucknick M, Dohner K, Krauter J, Kohne CH, Horst HA, Held G, von Lilienfeld-Toal M, Wilhelm S, Rummel M, Germing U, Gotze K, Nachbaur D, Schlegelberger B, Gohring G, Spath D, Morlok C, Teleanu V, Ganser A, Dohner H, Schlenk RF: Monosomal karyotype in adult acute myeloid leukemia: prognostic impact and outcome after different treatment strategies. Blood 2012, 119:551-558.
- [3]Grimwade D, Mrozek K: Diagnostic and prognostic value of cytogenetics in acute myeloid leukemia. Hematol Oncol Clin North Am 2011, 25:1135-1161. vii
- [4]Mrozek K, Heinonen K, Bloomfield CD: Clinical importance of cytogenetics in acute myeloid leukaemia. Best Pract Res Clin Haematol 2001, 14:19-47.
- [5]Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD: The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009, 114:937-951.
- [6]Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, Wheatley K, Harrison CJ, Burnett AK: Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 2010, 116:354-365.
- [7]Estey EH: Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol 2013, 88:318-327.
- [8]Van Hemel JO, Eussen HJ: Interchromosomal insertions. Identification of five cases and a review. Hum Genet 2000, 107:415-432.
- [9]Rucker FG, Bullinger L, Gribov A, Sill M, Schlenk RF, Lichter P, Dohner H, Dohner K: Molecular characterization of AML with ins(21;8)(q22;q22q22) reveals similarity to t(8;21) AML. Genes Chromosomes Cancer 2011, 50:51-58.
- [10]Arber DA, Chang KL, Lyda MH, Bedell V, Spielberger R, Slovak ML: Detection of NPM/MLF1 fusion in t(3;5)-positive acute myeloid leukemia and myelodysplasia. Hum Pathol 2003, 34:809-813.
- [11]Xu Y, Yin J, Pan J, Wu C, Wang Q, Yao H, Wu D, Chen S, Sun A: A BCR-JAK2 fusion gene from ins(22;9)(q11;p13p24) in a patient with atypical chronic myeloid leukemia. Leuk Lymphoma 2013, 54:2322-2324.
- [12]Wang ES, Maslak P, Cathcart K, Jurcic JG: Acute myeloid leukemia with t(5;18)(q35;q21). Cancer Genet Cytogenet 2001, 127:71-73.
- [13]Daraki A, Bourantas LK, Manola KN: Translocation t(5;18)(q35;q21) as a rare nonrandom abnormality in acute myeloid leukemia. Cytogenet Genome Res 2013, 139:289-294.
- [14]Fathi AT, Chen YB: Treatment of FLT3-ITD acute myeloid leukemia. Am J Blood Res 2011, 1:175-189.
- [15]Santos FP, Jones D, Qiao W, Cortes JE, Ravandi F, Estey EE, Verma D, Kantarjian H, Borthakur G: Prognostic value of FLT3 mutations among different cytogenetic subgroups in acute myeloid leukemia. Cancer 2011, 117:2145-2155.
- [16]Schiller J, Praulich I, Krings Rocha C, Kreuzer KA: Patient-specific analysis of FLT3 internal tandem duplications for the prognostication and monitoring of acute myeloid leukemia. Eur J Haematol 2012, 89:53-62.
- [17]Thanasopoulou A, Tzankov A, Schwaller J: Potent cooperation between the NUP98-NSD1 fusion and FLT3-ITD mutation in acute myeloid leukemia induction. Haematologica 2014, 99:1465-1471.
- [18]Kolomietz E, Al-Maghrabi J, Brennan S, Karaskova J, Minkin S, Lipton J, Squire JA: Primary chromosomal rearrangements of leukemia are frequently accompanied by extensive submicroscopic deletions and may lead to altered prognosis. Blood 2001, 97:3581-3588.
- [19]Bacher U, Schnittger S, Kern W, Hiddemann W, Haferlach T, Schoch C: The incidence of submicroscopic deletions in reciprocal translocations is similar in acute myeloid leukemia, BCR-ABL positive acute lymphoblastic leukemia, and chronic myeloid leukemia. Haematologica 2005, 90:558-559.
- [20]Moon HW, Chang YH, Kim TY, Oh BR, Min HC, Kim BK, Ahn HS, Cho HI, Lee DS: Incidence of submicroscopic deletions vary according to disease entities and chromosomal translocations in hematologic malignancies: investigation by fluorescence in situ hybridization. Cancer Genet Cytogenet 2007, 175:166-168.
- [21]Dolan M, Peterson B, Hirsch B: Array-based comparative genomic hybridization characterizes a deletion associated with a t(15;17) in acute promyelocytic leukemia. Am J Clin Pathol 2008, 130:818-823.
- [22]Goodarzi AA, Jeggo PA: The repair and signaling responses to DNA double-strand breaks. Adv Genet 2013, 82:1-45.
- [23]Johansson B, Harrison CJ: Acute myeloid leukemia. In Cancer Cytogenetics. Edited by Heim S, Mitelman F. John Wiley & Sons, Inc., Hoboken, New Jersey; 2009:45-139.
- [24]Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, Look AT: Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin¿s lymphoma. Science 1994, 263:1281-1284.
- [25]Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ: The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 1996, 87:882-886.
- [26]Jaju RJ, Fidler C, Haas OA, Strickson AJ, Watkins F, Clark K, Cross NC, Cheng JF, Aplan PD, Kearney L, Boultwood J, Wainscoat JS: A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood 2001, 98:1264-1267.
- [27]Itoh M, Okazaki T, Tashima M, Sawada H, Uchiyama T: Acute myeloid leukemia with t(5;11): two case reports. Leuk Res 1999, 23:677-680.
- [28]Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M, Ehninger G: Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 2006, 107:4011-4020.
- [29]Trimarchi T, Ntziachristos P, Aifantis I: A new player SETs in myeloid malignancy. Nat Genet 2013, 45:846-847.
- [30]Albano F, Anelli L, Zagaria A, Coccaro N, Casieri P, Minervini A, Specchia G: SETBP1 and miR_4319 dysregulation in primary myelofibrosis progression to acute myeloid leukemia. J Hematol Oncol 2012, 5:48. BioMed Central Full Text
- [31]Cristobal I, Blanco FJ, Garcia-Orti L, Marcotegui N, Vicente C, Rifon J, Novo FJ, Bandres E, Calasanz MJ, Bernabeu C, Odero MD: SETBP1 overexpression is a novel leukemogenic mechanism that predicts adverse outcome in elderly patients with acute myeloid leukemia. Blood 2010, 115:615-625.
- [32]Goshima G, Mayer M, Zhang N, Stuurman N, Vale RD: Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J Cell Biol 2008, 181:421-429.
- [33]Fuchs O: Important genes in the pathogenesis of 5q- syndrome and their connection with ribosomal stress and the innate immune system pathway. Leuk Res Treat 2012, 2012:179402.
- [34]Eisenmann KM, Dykema KJ, Matheson SF, Kent NF, DeWard AD, West RA, Tibes R, Furge KA, Alberts AS: 5q- myelodysplastic syndromes: chromosome 5q genes direct a tumor-suppression network sensing actin dynamics. Oncogene 2009, 28:3429-3441.
- [35]Douet-Guilbert N, De Braekeleer E, Basinko A, Herry A, Gueganic N, Bovo C, Trillet K, Dos Santos A, Le Bris MJ, Morel F, Eveillard JR, Berthou C, De Braekeleer M: Molecular characterization of deletions of the long arm of chromosome 5 (del(5q)) in 94 MDS/AML patients. Leukemia 2012, 26:1695-1697.
- [36]Zhao N, Stoffel A, Wang PW, Eisenbart JD, Espinosa R 3rd, Larson RA, Le Beau MM: Molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases to 1¿1.5 Mb and preparation of a PAC-based physical map. Proc Natl Acad Sci U S A 1997, 94:6948-6953.
- [37]Jerez A, Gondek LP, Jankowska AM, Makishima H, Przychodzen B, Tiu RV, O¿Keefe CL, Mohamedali AM, Batista D, Sekeres MA, McDevitt MA, Mufti GJ, Maciejewski JP: Topography, clinical, and genomic correlates of 5q myeloid malignancies revisited. J Clin Oncol 2012, 30:1343-1349.
- [38]Stoddart A, Fernald AA, Wang J, Davis EM, Karrison T, Anastasi J, Le Beau MM: Haploinsufficiency of del(5q) genes, Egr1 and Apc, cooperate with Tp53 loss to induce acute myeloid leukemia in mice. Blood 2014, 123:1069-1078.
- [39]Ebert BL: Molecular dissection of the 5q deletion in myelodysplastic syndrome. Semin Oncol 2011, 38:621-626.
- [40]Fu CT, Zhu KY, Mi JQ, Liu YF, Murray ST, Fu YF, Ren CG, Dong ZW, Liu YJ, Dong M, Jin Y, Chen Y, Deng M, Zhang W, Chen B, Breslin P, Chen SJ, Chen Z, Becker MW, Zhu J, Zhang JW, Liu TX: An evolutionarily conserved PTEN-C/EBPalpha-CTNNA1 axis controls myeloid development and transformation. Blood 2010, 115:4715-4724.
- [41]Matsumura K, Sakai C, Kawakami S, Yamashita F, Hashida M: Inhibition of cancer cell growth by GRP78 siRNA lipoplex via activation of unfolded protein response. Biol Pharm Bull 2014, 37:648-653.
- [42]Richardson PG, Schlossman R, Hideshima T, Anderson KC: New treatments for multiple myeloma. Oncology 2005, 19:1781-1792. discussion 1792, 1795¿1787
- [43]O¿Connor OA, Wright J, Moskowitz C, Muzzy J, MacGregor-Cortelli B, Stubblefield M, Straus D, Portlock C, Hamlin P, Choi E, Dumetrescu O, Esseltine D, Trehu E, Adams J, Schenkein D, Zelenetz AD: Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin¿s lymphoma and mantle cell lymphoma. J Clin Oncol 2005, 23:676-684.
- [44]Terpos E, Verrou E, Banti A, Kaloutsi V, Lazaridou A, Zervas K: Bortezomib is an effective agent for MDS/MPD syndrome with 5q- anomaly and thrombocytosis. Leuk Res 2007, 31:559-562.
- [45]Shao L, Kang SH, Li J, Hixson P, Taylor J, Yatsenko SA, Shaw CA, Milosavljevic A, Chang CC, Cheung SW, Patel A: Array comparative genomic hybridization detects chromosomal abnormalities in hematological cancers that are not detected by conventional cytogenetics. J Mol Diagn 2010, 12:670-679.
- [46]Walter MJ, Payton JE, Ries RE, Shannon WD, Deshmukh H, Zhao Y, Baty J, Heath S, Westervelt P, Watson MA, Tomasson MH, Nagarajan R, O¿Gara BP, Bloomfield CD, Mrozek K, Selzer RR, Richmond TA, Kitzman J, Geoghegan J, Eis PS, Maupin R, Fulton RS, McLellan M, Wilson RK, Mardis ER, Link DC, Graubert TA, DiPersio JF, Ley TJ: Acquired copy number alterations in adult acute myeloid leukemia genomes. Proc Natl Acad Sci U S A 2009, 106:12950-12955.
- [47]Bullinger L, Kronke J, Schon C, Radtke I, Urlbauer K, Botzenhardt U, Gaidzik V, Cario A, Senger C, Schlenk RF, Downing JR, Holzmann K, Dohner K, Dohner H: Identification of acquired copy number alterations and uniparental disomies in cytogenetically normal acute myeloid leukemia using high-resolution single-nucleotide polymorphism analysis. Leukemia 2010, 24:438-449.
- [48]Kjeldsen E, Roug AS: A novel unbalanced de novo translocation der(5)t(4;5)(q26;q21.1) in adult T-cell precursor lymphoblastic leukemia. Mol Cytogenet 2012, 5:21. BioMed Central Full Text
- [49]An International System for Human Cytogenetic Nomenclature (2013). S. Karger and Cytogenetic and Genome Research, Basel; 2013.