期刊论文详细信息
Proteome Science
Identification of differentially accumulated proteins associated with embryogenic and non-embryogenic calli in saffron (Crocus sativus L.)
Elaheh Vatankhah3  Javad Gharechahi2  Behzad Ghareyazie1  Hassan Ebrahimzadeh3  Golandam Sharifi3 
[1] Department of Genomics, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran;Department of Molecular Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran;Department of Botany, Faculty of Science, University of Tehran, Tehran, Iran
关键词: MALDI-TOF/TOF;    two-dimensional gel electrophoresis;    somatic embryogenesis;    Crocus sativus L.;    Saffron;   
Others  :  817669
DOI  :  10.1186/1477-5956-10-3
 received in 2011-10-05, accepted in 2012-01-13,  发布年份 2012
PDF
【 摘 要 】

Background

Somatic embryogenesis (SE) is a complex biological process that occurs under inductive conditions and causes fully differentiated cells to be reprogrammed to an embryo like state. In order to get a better insight about molecular basis of the SE in Crocus sativus L. and to characterize differentially accumulated proteins during the process, a proteomic study based on two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry has been carried out.

Results

We have compared proteome profiles of non-embryogenic and embryogenic calli with native corm explants. Total soluble proteins were phenol-extracted and loaded on 18 cm IPG strips for the first dimension and 11.5% sodium dodecyl sulfate-polyacrylamide gels for the second dimension. Fifty spots with more than 1.5-fold change in abundance were subjected to mass spectrometry analysis for further characterization. Among them 36 proteins could be identified, which are classified into defense and stress response, protein synthesis and processing, carbohydrate and energy metabolism, secondary metabolism, and nitrogen metabolism.

Conclusion

Our results showed that diverse cellular and molecular processes were affected during somatic to embryogenic transition. Differential proteomic analysis suggests a key role for ascorbate metabolism during early stage of SE, and points to the possible role of ascorbate-glutathione cycle in establishing somatic embryos.

【 授权许可】

   
2012 Sharifi et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140711014218327.pdf 1540KB PDF download
Figure 5. 54KB Image download
Figure 4. 66KB Image download
Figure 3. 17KB Image download
Figure 2. 56KB Image download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Mathew B: Crocus sativus and its allies (Iridaceae). Plant Systematics and Evolution 1977, 128:89-103.
  • [2]Ascough G, Erwin J, van Staden J: Micropropagation of iridaceae--a review. Plant Cell, Tissue and Organ Culture 2009, 97:1-19.
  • [3]Deo PC, Tyagi AP, Taylor M, Harding R, Becker D: Factors affecting somatic embryogenesis and transformation in modern plant breeding. The South Pacific Journal of Natural and Applied Sciences 2010, 28:27-40.
  • [4]Quiroz-Figueroa F, Rojas-Herrera R, Galaz-Avalos R, Loyola-Vargas V: Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell, Tissue and Organ Culture 2006, 86:285-301.
  • [5]Zimmerman JL: Somatic Embryogenesis: A Model for Early Development in Higher Plants. Plant Cell 1993, 5:1411-1423.
  • [6]Gupta SD, Conger BV: Somatic embryogenesis and plant regeneration from suspension cultures of switchgrass. Crop science 1999, 39:243-247.
  • [7]Imin N, Nizamidin M, Daniher D, Nolan KE, Rose RJ, Rolfe BG: Proteomic analysis of somatic embryogenesis in Medicago truncatula. Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments. Plant Physiol 2005, 137:1250-1260.
  • [8]Schmidt ED, Guzzo F, Toonen MA, de Vries SC: A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 1997, 124:2049-2062.
  • [9]Nolan KE, Irwanto RR, Rose RJ: Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 2003, 133:218-230.
  • [10]Zeng F, Zhang X, Cheng L, Hu L, Zhu L, Cao J, Guo X: A draft gene regulatory network for cellular totipotency reprogramming during plant somatic embryogenesis. Genomics 2007, 90:620-628.
  • [11]Aleith F, Richter G: Gene expression during induction of somatic embryogenesis in carrot cell suspensions. Planta 1991, 183:17-24.
  • [12]Aquea F, Arce-Johnson P: Identification of genes expressed during early somatic embryogenesis in Pinus radiata. Plant Physiol Biochem 2008, 46:559-568.
  • [13]Lin HC, Morcillo F, Dussert S, Tranchant-Dubreuil C, Tregear JW, Tranbarger TJ: Transcriptome analysis during somatic embryogenesis of the tropical monocot Elaeis guineensis: evidence for conserved gene functions in early development. Plant Mol Biol 2009, 70:173-192.
  • [14]Che P, Love TM, Frame BR, Wang K, Carriquiry AL, Howell SH: Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Mol Biol 2006, 62:1-14.
  • [15]Thibaud-Nissen F, Shealy RT, Khanna A, Vodkin LO: Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 2003, 132:118-136.
  • [16]Zeng F, Zhang X, Zhu L, Tu L, Guo X, Nie Y: Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol 2006, 60:167-183.
  • [17]Hagen G, Kleinschmidt A, Guilfoyle T: Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta 1984, 162:147-153.
  • [18]Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G: Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 2003, 426:147-153.
  • [19]Eckardt NA: Auxin and the Power of the Proteasome in Plants. The Plant Cell Online 2001, 13:2161.
  • [20]Yang X, Zhang X: Regulation of Somatic Embryogenesis in Higher Plants. Critical Reviews in Plant Sciences 2010, 29:36-57.
  • [21]Overvoorde PJ, Grimes HD: The role of calcium and calmodulin in carrot somatic embryogenesis. Plant and Cell Physiology 1994, 35:135.
  • [22]Lotan T, Ohto M, Yee KM, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ: Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 1998, 93:1195-1205.
  • [23]Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ: LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proceedings of the National Academy of Sciences 2001, 98:11806.
  • [24]Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AAM, Miki BLA: Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. The Plant Cell Online 2002, 14:1737.
  • [25]Banno H, Ikeda Y, Niu QW, Chua NH: Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. The Plant Cell Online 2001, 13:2609.
  • [26]Zuo J, Niu QW, Frugis G, Chua NH: The WUSCHEL gene promotes vegetative to embryonic transition in Arabidopsis. The Plant Journal 2002, 30:349-359.
  • [27]Heck GR, Perry SE, Nichols KW, Fernandez DE: AGL15, a MADS domain protein expressed in developing embryos. The Plant Cell Online 1995, 7:1271.
  • [28]Maier T, Guell M, Serrano L: Correlation of mRNA and protein in complex biological samples. FEBS Lett 2009, 583:3966-3973.
  • [29]Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M: Global quantification of mammalian gene expression control. Nature 2011, 473:337-342.
  • [30]Rose JK, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS: Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 2004, 39:715-733.
  • [31]Wilkins M: Proteomics data mining. Expert Review of Proteomics 2009, 6:599-603.
  • [32]Job D, Haynes PA, Zivy M: Plant proteomics. Proteomics 2011, 11:1557-1558.
  • [33]Sung ZR, Okimoto R: Embryonic proteins in somatic embryos of carrot. Proceedings of the National Academy of Sciences 1981, 78:3683-3687.
  • [34]Chen L-J, Luthe DS: Analysis of proteins from embryogenic and non-embryogenic rice (Oryza sativa L.) calli. Plant Science 1987, 48:181-188.
  • [35]Pedroso MC, Hilbert J-L, Vasseur J, Pais MS: Polypeptides associated with the induction of direct somatic embryogenesis in Camellia japonica leaves I. Identification of embryo-specific polypeptides. Journal of Experimental Botany 1995, 46:1579-1584.
  • [36]Sallandrouze A, Faurobert M, El Maataoui M, Espagnac H: Two-dimensional electrophoretic analysis of proteins associated with somatic embryogenesis development in Cupressus sempervirens L. Electrophoresis 1999, 20:1109-1119.
  • [37]Ishizaki T, Megumi C, Komai F, Masuda K, Oosawa K: Accumulation of a 31-kDa glycoprotein in association with the expression of embryogenic potential by spinach callus in culture. Physiol Plant 2002, 114:109-115.
  • [38]Marsoni M, Bracale M, Espen L, Prinsi B, Negri AS, Vannini C: Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep 2008, 27:347-356.
  • [39]Imin N, De Jong F, Mathesius U, van Noorden G, Saeed NA, Wang XD, Rose RJ, Rolfe BG: Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts. Proteomics 2004, 4:1883-1896.
  • [40]Bian F, Zheng C, Qu F, Gong X, You C: Proteomic Analysis of Somatic Embryogenesis in Cyclamen persicum Mill. Plant Molecular Biology Reporter 2010, 28:22-31.
  • [41]Winkelmann T, Heintz D, Van Dorsselaer A, Serek M, Braun HP: Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill. reveal new insights into seed and germination physiology. Planta 2006, 224:508-519.
  • [42]Lyngved R, Renaut J, Hausman J-F, Iversen T-H, Hvoslef-Eide A: Embryo-specific Proteins in Cyclamen persicum Analyzed with 2-D DIGE. Journal of Plant Growth Regulation 2008, 27:353-369.
  • [43]Lippert D, Zhuang J, Ralph S, Ellis DE, Gilbert M, Olafson R, Ritland K, Ellis B, Douglas CJ, Bohlmann J: Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 2005, 5:461-473.
  • [44]Pan Z, Guan R, Zhu S, Deng X: Proteomic analysis of somatic embryogenesis in Valencia sweet orange (Citrus sinensis Osbeck). Plant Cell Rep 2009, 28:281-289.
  • [45]Pan Z, Zhu S, Guan R, Deng X: Identification of 2,4-D-responsive proteins in embryogenic callus of Valencia sweet orange (Citrus sinensis Osbeck) following osmotic stress. Plant Cell, Tissue and Organ Culture 2010, 103:145-153.
  • [46]Cangahuala-Inocente G, Villarino A, Seixas D, Dumas-Gaudot E, Terenzi H, Guerra M: Differential proteomic analysis of developmental stages of Acca sellowiana somatic embryos. Acta Physiologiae Plantarum 2009, 31:501-514.
  • [47]Murashige T, Skoog F: A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum 1962, 15:473-497.
  • [48]Hurkman WJ, Tanaka CK: Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 1986, 81:802-806.
  • [49]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [50]Blum H, Beier H, Gross HJ: Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis (Weinheim, Fed Repub Ger) 1987, 8:93-99.
  • [51]Neuhoff V, Arnold N, Taube D, Ehrhardt W: Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 1988, 9:255-262.
  • [52]Ding B, bai SH, Wu Y, Wang BK: Preliminary report on tissue culture of corms of Crocus sativus. Acta Bot Sin 1979, 21:387.
  • [53]Damerval C, De Vienne D, Zivy M, Thiellement H: Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 1986, 7:52-54.
  • [54]Gomez A, Lopez JA, Pintos B, Camafeita E, Bueno MA: Proteomic analysis from haploid and diploid embryos of Quercus suber L. identifies qualitative and quantitative differential expression patterns. Proteomics 2009, 9:4355-4367.
  • [55]Satoh S, Iizuka C, Kikuchi A, Nakamura N, Fujii T: Proteins and Carbohydrates in Xylem Sap from Squash Root. Plant and Cell Physiology 1992, 33:841-847.
  • [56]Cassells A, Curry R: Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell, Tissue and Organ Culture 2001, 64:145-157.
  • [57]Fehér A, Pasternak TP, Dudits D: Transition of somatic plant cells to an embryogenic state. Plant Cell, Tissue and Organ Culture 2003, 74:201-228.
  • [58]Puigderrajols P, Jofre A, Mir G, Pla M, Verdaguer D, Huguet G, Molinas M: Developmentally and stress-induced small heat shock proteins in cork oak somatic embryos. J Exp Bot 2002, 53:1445-1452.
  • [59]Coca MA, Almoguera C, Jordano J: Expression of sunflower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: localization and possible functional implications. Plant Mol Biol 1994, 25:479-492.
  • [60]Kitamiya E, Suzuki S, Sano T, Nagata T: Isolation of two genes that were induced upon the initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2,4-D. Plant Cell Reports 2000, 19:551-557.
  • [61]Pitto L, Schiavo FL, Giuliano G, Terzi M: Analysis of the heat-shock protein pattern during somatic embryogenesis of carrot. Plant Molecular Biology 1983, 2:231-237.
  • [62]Kanabus J, Pikaard CS, Cherry JH: Heat Shock Proteins in Tobacco Cell Suspension during Growth Cycle. Plant Physiol 1984, 75:639-644.
  • [63]Zimmerman JL, Apuya N, Darwish K, O'Carroll C: Novel regulation of heat shock genes during carrot somatic embryo development. Plant Cell 1989, 1:1137-1146.
  • [64]den Boer BG, Murray JA: Triggering the cell cycle in plants. Trends Cell Biol 2000, 10:245-250.
  • [65]Guilfoyle T, PJJ Hooykaas MAH, Libbenga KR: Auxin-regulated genes and promoters. In New Comprehensive Biochemistry. Volume 33. Elsevier; 1999::423-459.
  • [66]Zhang J, Ma H, Chen S, Ji M, Perl A, Kovacs L, Chen S: Stress response proteins' differential expression in embryogenic and non-embryogenic callus of Vitis vinifera L. cv. Cabernet Sauvignon--A proteomic approach. Plant Science 2009, 177:103-113.
  • [67]Asada K: Ascorbate peroxidase--a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 1992, 85:235-241.
  • [68]Apel K, Hirt H: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 2004, 55:373-399.
  • [69]Balbuena TS, Jo L, Pieruzzi FP, Dias LL, Silveira V, Santa-Catarina C, Junqueira M, Thelen JJ, Shevchenko A, Floh EI: Differential proteome analysis of mature and germinated embryos of Araucaria angustifolia. Phytochemistry 2011, 72:302-311.
  • [70]Caliskan M, Turet M, Cuming AC: Formation of wheat (Triticum aestivum L.) embryogenic callus involves peroxide-generating germin-like oxalate oxidase. planta 2004, 219:132-140.
  • [71]Harrison MD, Jones CE, Dameron CT: Copper chaperones: function, structure and copper-binding properties. J Biol Inorg Chem 1999, 4:145-153.
  • [72]Ciechanover A: The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 1998, 17:7151-7160.
  • [73]Glickman MH, Ciechanover A: The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002, 82:373-428.
  • [74]Nogueira FC, Goncalves EF, Jereissati ES, Santos M, Costa JH, Oliveira-Neto OB, Soares AA, Domont GB, Campos FA: Proteome analysis of embryogenic cell suspensions of cowpea (Vigna unguiculata). Plant Cell Rep 2007, 26:1333-1343.
  • [75]Gatenby AA: Protein folding and chaperonins. Plant Molecular Biology 1992, 19:677-687.
  • [76]Chen YJ, Inouye M: The intramolecular chaperone-mediated protein folding. Curr Opin Struct Biol 2008, 18:765-770.
  • [77]Fink AL: Chaperone-mediated protein folding. Physiol Rev 1999, 79:425-449.
  • [78]Sghaier-Hammami B, Valledor L, Drira N, Jorrin-Novo JV: Proteomic analysis of the development and germination of date palm (Phoenix dactylifera L.) zygotic embryos. Proteomics 2009, 9:2543-2554.
  • [79]Carrari F, Nunes-Nesi A, Gibon Y, Lytovchenko A, Loureiro ME, Fernie AR: Reduced expression of aconitase results in an enhanced rate of photosynthesis and marked shifts in carbon partitioning in illuminated leaves of wild species tomato. Plant Physiol 2003, 133:1322-1335.
  • [80]Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH: The impact of oxidative stress on Arabidopsis mitochondria. Plant J 2002, 32:891-904.
  • [81]Pego JV, Smeekens SCM: Plant fructokinases: a sweet family get-together. Trends in Plant Science 2000, 5:531-536.
  • [82]Kim ST, Kang SY, Wang Y, Kim SG, Hwang DH, Kang KY: Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics 2008, 8:3577-3587.
  • [83]Jiang X-M, Neal B, Santiago F, Lee SJ, Romana LK, Reeves PR: Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Molecular Microbiology 1991, 5:695-713.
  • [84]Lee R-H, Wang C-H, Huang L-T, Chen S-CG: Leaf senescence in rice plants: cloning and charactreization of senescence up-regulated genes. Journal of Experimental Botany 2001, 52:1117-1121.
  • [85]Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V, et al.: GDP-D-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant J 2009, 60:499-508.
  • [86]Wolucka BA, Van Montagu M: GDP-mannose 3',5'-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis ovitamin C in plants. J Biol Chem 2003, 278:47483-47490.
  • [87]Zhao Y, Du H, Wang Z, Huang B: Identification of proteins associated with water-deficit tolerance in C4 perennial grass species, Cynodon dactylonxCynodon transvaalensis and Cynodon dactylon. Physiol Plant 2011, 141:40-55.
  • [88]Kato Y, Urano Ji, Maki Y, Ushimaru T: Purification and Characterization of Dehydroascorbate Reductase from Rice. Plant and Cell Physiology 1997, 38:173-178.
  • [89]Joosen R, Cordewener j, Jaya Supena ED, Vorst O, Lammers M, Maliepaard C, Zeilmaker T, Miki B, America T, Custers J, Boutilier K: Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapeseed microspore-derived embryo development. Plant Physiol 2007, 144:155-172.
  • [90]Petrucco S, Bolchi A, Foroni C, Percudani R, Rossi GL, Ottonello S: A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation. Plant Cell 1996, 8:69-80.
  • [91]Lers A, Burd S, Lomaniec E, Droby S, Chalutz E: The expression of a grapefruit gene encoding an isoflavone reductase-like protein is induced in response to UV irradiation. Plant Mol Biol 1998, 36:847-856.
  • [92]Ye ZH, Zhong R, Morrison WH, Himmelsbach DS: Caffeoyl coenzyme A O-methyltransferase and lignin biosynthesis. Phytochemistry 2001, 57:1177-1185.
  • [93]Guo D, Chen F, Inoue K, Blount JW, Dixon RA: Down regulation of Caffeic Acid 3-O-Methyltransferase and Caffeoyl CoA 3-O-Methyltransferase in Transgenic Alfalfa: Impacts on Lignin Structure and Implications for the Biosynthesis of G and S Lignin. The plant cell 2001, 13:73-88.
  • [94]Kärkönen A, Koutaniemi S: Lignin Biosynthesis Studies in Plant Tissue Cultures. Journal of Integrative Plant Biology 2010, 52:176-185.
  • [95]Higashi K, Shiota H, Kamada H: Patterns of expression of the genes for glutamine synthetase isoforms during somatic and zygotic embryogenesis in carrot. Plant Cell Physiol 1998, 39:418-424.
  • [96]Joy RW, McLntyre DD, Vogel HJ, Thorpe TA: Stage-specific nitrogen metabolism in developing carrot somatic embryos. Physiologia Plantarum 1996, 97:149-159.
  • [97]Galland R, Randoux B, Vasseur J, Hilbert JL: A glutathione S-transferase cDNA identified by mRNA differential display is upregulated during somatic embryogenesis in Cichorium. Biochim Biophys Acta 2001, 1522:212-216.
  • [98]Rodriguez MJ, Suarez MF, Heredia R, Avila C, Breton D, Trontin JF, Filonova L, Bozhkov P, von Arnold S, Harvengt L, Canovas FM: Expression patterns of two glutamine synthetase genes in zygotic and somatic pine embryos support specific roles in nitrogen metabolism during embryogenesis. New Phytol 2006, 169:35-44.
  • [99]Sghaier-Hammami B, Drira N, Jorrín-Novo JV: Comparative 2-DE proteomic analysis of date palm (Phoenix dactylifera L.) somatic and zygotic embryos. Journal of Proteomics 2009, 73:161-177.
  • [100]Hirt H, Pay A, Gyorgyey J, Bako L, Nemeth K, Bogre L, Schweyen RJ, Heberle-Bors E, Dudits D: Complementation of a yeast cell cycle mutant by an alfalfa cDNA encoding a protein kinase homologous to p34cdc2. Proc Natl Acad Sci USA 1991, 88:1636-1640.
  • [101]Park S, Rancour DM, Bednarek SY: In planta analysis of the cell cycle-dependent localization of AtCDC48A and its critical roles in cell division, expansion, and differentiation. Plant Physiol 2008, 148:246-258.
  文献评价指标  
  下载次数:17次 浏览次数:17次