期刊论文详细信息
Radiation Oncology
Technology assessment of automated atlas based segmentation in prostate bed contouring
George Rodrigues3  Belal Ahmad3  Michael Lock3  Tracy Sexton3  David D'Souza3  Glenn Bauman3  Stewart Gaede2  Alexander V Louie3  Jeremiah Hwee1 
[1] Department of Epidemiology and Biostatistics, University of Western Ontario, London, Ontario, Canada;Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada;Department of Radiation Oncology, London Regional Cancer Program, London, Ontario, Canada
关键词: contouring atlas;    target volume delineation;    contouring;    prostate bed;    radiotherapy;   
Others  :  1223905
DOI  :  10.1186/1748-717X-6-110
 received in 2011-06-10, accepted in 2011-09-09,  发布年份 2011
PDF
【 摘 要 】

Background

Prostate bed (PB) contouring is time consuming and associated with inter-observer variability. We evaluated an automated atlas-based segmentation (AABS) engine in its potential to reduce contouring time and inter-observer variability.

Methods

An atlas builder (AB) manually contoured the prostate bed, rectum, left femoral head (LFH), right femoral head (RFH), bladder, and penile bulb of 75 post-prostatectomy cases to create an atlas according to the recent RTOG guidelines. 5 other Radiation Oncologists (RO) and the AABS contoured 5 new cases. A STAPLE contour for each of the 5 patients was generated. All contours were anonymized and sent back to the 5 RO to be edited as clinically necessary. All contouring times were recorded. The dice similarity coefficient (DSC) was used to evaluate the unedited- and edited- AABS and inter-observer variability among the RO. Descriptive statistics, paired t-tests and a Pearson correlation were performed. ANOVA analysis using logit transformations of DSC values was calculated to assess inter-observer variability.

Results

The mean time for manual contours and AABS was 17.5- and 14.1 minutes respectively (p = 0.003). The DSC results (mean, SD) for the comparison of the unedited-AABS versus STAPLE contours for the PB (0.48, 0.17), bladder (0.67, 0.19), LFH (0.92, 0.01), RFH (0.92, 0.01), penile bulb (0.33, 0.25) and rectum (0.59, 0.11). The DSC results (mean, SD) for the comparison of the edited-AABS versus STAPLE contours for the PB (0.67, 0.19), bladder (0.88, 0.13), LFH (0.93, 0.01), RFH (0.92, 0.01), penile bulb (0.54, 0.21) and rectum (0.78, 0.12). The DSC results (mean, SD) for the comparison of the edited-AABS versus the expert panel for the PB (0.47, 0.16), bladder (0.67, 0.18), LFH (0.83, 0.18), RFH (0.83, 0.17), penile bulb (0.31, 0.23) and rectum (0.58, 0.09). The DSC results (mean, SD) for the comparison of the STAPLE contours and the 5 RO are PB (0.78, 0.15), bladder (0.96, 0.02), left femoral head (0.87, 0.19), right femoral head (0.87, 0.19), penile bulb (0.70, 0.17) and the rectum (0.89, 0.06). The ANOVA analysis suggests inter-observer variability among at least one of the 5 RO (p value = 0.002).

Conclusion

The AABS tool results in a time savings, and when used to generate auto-contours for the femoral heads, bladder and rectum had superior to good spatial overlap. However, the generated auto-contours for the prostate bed and penile bulb need improvement.

【 授权许可】

   
2011 Hwee et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150905161906877.pdf 443KB PDF download
Figure 4. 47KB Image download
Figure 3. 55KB Image download
Figure 2. 80KB Image download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Bolla M, Collette L: pT3N0M0 prostate cancer: a plea for adjuvant radiation. Nat Rev Urol 2009, 6(8):410-412.
  • [2]Michalski JM, Lawton C, El Naqa I, Ritter M, O'Meara E, Seider MJ, Lee WR, Rosenthal SA, Pisansky T, Catton C, et al.: Development of RTOG consensus guidelines for the definition of the clinical target volume for postoperative conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 2010, 76(2):361-368.
  • [3]Wiltshire KL, Brock KK, Haider MA, Zwahlen D, Kong V, Chan E, Moseley J, Bayley A, Catton C, Chung PW, et al.: Anatomic boundaries of the clinical target volume (prostate bed) after radical prostatectomy. Int J Radiat Oncol Biol Phys 2007, 69(4):1090-1099.
  • [4]Mitchell DM, Perry L, Smith S, Elliott T, Wylie JP, Cowan RA, Livsey JE, Logue JP: Assessing the effect of a contouring protocol on postprostatectomy radiotherapy clinical target volumes and interphysician variation. Int J Radiat Oncol Biol Phys 2009, 75(4):990-993.
  • [5]Lawton CA, Michalski J, El-Naqa I, Kuban D, Lee WR, Rosenthal SA, Zietman A, Sandler H, Shipley W, Ritter M, et al.: Variation in the definition of clinical target volumes for pelvic nodal conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 2009, 74(2):377-382.
  • [6]Lawton CA, Michalski J, El-Naqa I, Buyyounouski MK, Lee WR, Menard C, O'Meara E, Rosenthal SA, Ritter M, Seider M: RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 2009, 74(2):383-387.
  • [7]Livsey JE, Wylie JP, Swindell R, Khoo VS, Cowan RA, Logue JP: Do differences in target volume definition in prostate cancer lead to clinically relevant differences in normal tissue toxicity? Int J Radiat Oncol Biol Phys 2004, 60(4):1076-1081.
  • [8]Jameson MG, Holloway LC, Vial PJ, Vinod SK, Metcalfe PE: A review of methods of analysis in contouring studies for radiation oncology. J Med Imaging Radiat Oncol 2010, 54(5):401-410.
  • [9]Zietman A, Goitein M, Tepper JE: Technology evolution: is it survival of the fittest? J Clin Oncol 2010, 28(27):4275-4279.
  • [10]Piper JW: Evaluation of An Intensity-Based Free-form Deformable Registration Algorithm. Medical Physics 2007, 34(6):2353-2354.
  • [11]Warfield SK, Zou KH, Wells WM: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 2004, 23(7):903-921.
  • [12]Ost P, De Meerleer G, Vercauteren T, De Gersem W, Veldeman L, Vandecasteele K, Fonteyne V, Villeirs G: Delineation of the Postprostatectomy Prostate Bed Using Computed Tomography: Interobserver Variability Following the EORTC Delineation Guidelines. Int J Radiat Oncol Biol Phys 2011.
  • [13]Symon Z, Tsvang L, Wygoda M, Ben-Yoseph R, Corn BW, Poortmans P, Portnoy O, Pfeffer MR: An interobserver study of prostatic fossa clinical target volume delineation in clinical practice: are regions of recurrence adequately targeted? Am J Clin Oncol 2011, 34(2):145-149.
  • [14]Miralbell R, Vees H, Lozano J, Khan H, Molla M, Hidalgo A, Linero D, Rouzaud M: Endorectal MRI assessment of local relapse after surgery for prostate cancer: A model to define treatment field guidelines for adjuvant radiotherapy in patients at high risk for local failure. Int J Radiat Oncol Biol Phys 2007, 67(2):356-361.
  • [15]Poortmans P, Bossi A, Vandeputte K, Bosset M, Miralbell R, Maingon P, Boehmer D, Budiharto T, Symon Z, van den Bergh AC, et al.: Guidelines for target volume definition in post-operative radiotherapy for prostate cancer, on behalf of the EORTC Radiation Oncology Group. Radiother Oncol 2007, 84(2):121-127.
  • [16]Sidhom MA, Kneebone AB, Lehman M, Wiltshire KL, Millar JL, Mukherjee RK, Shakespeare TP, Tai KH: Post-prostatectomy radiation therapy: consensus guidelines of the Australian and New Zealand Radiation Oncology Genito-Urinary Group. Radiother Oncol 2008, 88(1):10-19.
  • [17]Louie AV, Rodrigues G, Olsthoorn J, Palma D, Yu E, Yaremko B, Ahmad B, Aivas I, Gaede S: Inter-observer and intra-observer reliability for lung cancer target volume delineation in the 4D-CT era. Radiother Oncol 2010, 95(2):166-171.
  • [18]Reed VK, Woodward WA, Zhang L, Strom EA, Perkins GH, Tereffe W, Oh JL, Yu TK, Bedrosian I, Whitman GJ, et al.: Automatic segmentation of whole breast using atlas approach and deformable image registration. Int J Radiat Oncol Biol Phys 2009, 73(5):1493-1500.
  • [19]Young AV, Wortham A, Wernick I, Evans A, Ennis RD: Atlas-based segmentation improves consistency and decreases time required for contouring postoperative endometrial cancer nodal volumes. Int J Radiat Oncol Biol Phys 2011, 79(3):943-947.
  • [20]Stapleford LJ, Lawson JD, Perkins C, Edelman S, Davis L, McDonald MW, Waller A, Schreibmann E, Fox T: Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2010, 77(3):959-966.
  文献评价指标  
  下载次数:33次 浏览次数:9次