期刊论文详细信息
Retrovirology
Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses
John M Coffin1  Crystal Russo1  Julia H Wildschutte1  Ravi P Subramanian1 
[1] Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
关键词: human genome;    endogenous retroviruses;    evolution;   
Others  :  1209388
DOI  :  10.1186/1742-4690-8-90
 received in 2011-09-26, accepted in 2011-11-08,  发布年份 2011
PDF
【 摘 要 】

Background

Integration of retroviral DNA into a germ cell may lead to a provirus that is transmitted vertically to that host's offspring as an endogenous retrovirus (ERV). In humans, ERVs (HERVs) comprise about 8% of the genome, the vast majority of which are truncated and/or highly mutated and no longer encode functional genes. The most recently active retroviruses that integrated into the human germ line are members of the Betaretrovirus-like HERV-K (HML-2) group, many of which contain intact open reading frames (ORFs) in some or all genes, sometimes encoding functional proteins that are expressed in various tissues. Interestingly, this expression is upregulated in many tumors ranging from breast and ovarian tissues to lymphomas and melanomas, as well as schizophrenia, rheumatoid arthritis, and other disorders.

Results

No study to date has characterized all HML-2 elements in the genome, an essential step towards determining a possible functional role of HML-2 expression in disease. We present here the most comprehensive and accurate catalog of all full-length and partial HML-2 proviruses, as well as solo LTR elements, within the published human genome to date. Furthermore, we provide evidence for preferential maintenance of proviruses and solo LTR elements on gene-rich chromosomes of the human genome and in proximity to gene regions.

Conclusions

Our analysis has found and corrected several errors in the annotation of HML-2 elements in the human genome, including mislabeling of a newly identified group called HML-11. HML-elements have been implicated in a wide array of diseases, and characterization of these elements will play a fundamental role to understand the relationship between endogenous retrovirus expression and disease.

【 授权许可】

   
2011 Subramanian et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150602101241814.pdf 709KB PDF download
Figure 6. 66KB Image download
Figure 5. 31KB Image download
acp-11-6367-2011.pdf 4717KB PDF download
Figure 3. 94KB Image download
Figure 2. 104KB Image download
Figure 1. 145KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Boeke JD, Stoye JP: Retrotransposons, Endogenous Retroviruses, and the Evolution of Retroelements. In Retroviruses. Edited by Coffin JM, Hughes SH, Varmus HE. Cold Spring Harbor Laboratory Press; 1997:343-436.
  • [2]Bock M, Stoye JP: Endogenous retroviruses and the human germline. Curr Opin Genet Dev 2000, 10:651-655.
  • [3]IHGSC: A physical map of the human genome. Nature 2001, 409:934-941.
  • [4]Dewannieux M, Blaise S, Heidmann T: Identification of a functional envelope protein from the HERV-K family of human endogenous retroviruses. J Virol 2005, 79:15573-15577.
  • [5]Reus K, Mayer J, Sauter M, Zischler H, Muller-Lantzsch N, Meese E: HERV-K(OLD): ancestor sequences of the human endogenous retrovirus family HERV-K(HML-2). J Virol 2001, 75:8917-8926.
  • [6]Boller K, Schonfeld K, Lischer S, Fischer N, Hoffmann A, Kurth R, Tonjes RR: Human endogenous retrovirus HERV-K113 is capable of producing intact viral particles. J Gen Virol 2008, 89:567-572.
  • [7]Blaise S, Ruggieri A, Dewannieux M, Cosset FL, Heidmann T: Identification of an envelope protein from the FRD family of human endogenous retroviruses (HERV-FRD) conferring infectivity and functional conservation among simians. J Virol 2004, 78:1050-1054.
  • [8]Turner G, Barbulescu M, Su M, Jensen-Seaman MI, Kidd KK, Lenz J: Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr Biol 2001, 11:1531-1535.
  • [9]Jern P, Coffin JM: Effects of retroviruses on host genome function. Annu Rev Genet 2008, 42:709-732.
  • [10]Bittner JJ: Some possible effects of nursing on the mammary gland tumor incidence in mice. Science 1936, 84:162.
  • [11]Macfarlane C, Simmonds P: Allelic variation of HERV-K(HML-2) endogenous retroviral elements in human populations. J Mol Evol 2004, 59:642-656.
  • [12]Mager DL, Medstrand P: Retroviral repeat sequences. In Nature Encyclopedia of the Human Genome. Edited by Cooper D. London: Nature Publishing Group; 2003:57-63.
  • [13]Lower R, Boller K, Hasenmaier B, Korbmacher C, Muller-Lantzsch N, Lower J, Kurth R: Identification of human endogenous retroviruses with complex mRNA expression and particle formation. Proc Natl Acad Sci USA 1993, 90:4480-4484.
  • [14]Buzdin A, Ustyugova S, Khodosevich K, Mamedov I, Lebedev Y, Hunsmann G, Sverdlov E: Human-specific subfamilies of HERV-K (HML-2) long terminal repeats: three master genes were active simultaneously during branching of hominoid lineages. Genomics 2003, 81:149-156.
  • [15]Barbulescu M, Turner G, Seaman MI, Deinard AS, Kidd KK, Lenz J: Many human endogenous retrovirus K (HERV-K) proviruses are unique to humans. Curr Biol 1999, 9:861-868.
  • [16]Belshaw R, Dawson AL, Woolven-Allen J, Redding J, Burt A, Tristem M: Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity. J Virol 2005, 79:12507-12514.
  • [17]Hughes JF, Coffin JM: Human endogenous retrovirus K solo-LTR formation and insertional polymorphisms: implications for human and viral evolution. Proc Natl Acad Sci 2004, 101:1668-1672.
  • [18]Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt A, Tristem M: Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci 2004, 101:4894-4899.
  • [19]Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, Pierron G, Heidmann T: Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res 2006, 16:1548-1556.
  • [20]Lee YN, Bieniasz PD: Reconstitution of an infectious human endogenous retrovirus. PLoS Pathog 2007, 3:e10.
  • [21]Frank O, Verbeke C, Schwarz N, Mayer J, Fabarius A, Hehlmann R, Leib-Mosch C, Seifarth W: Variable transcriptional activity of endogenous retroviruses in human breast cancer. J Virol 2008, 82:1808-1818.
  • [22]Ono M, Kawakami M, Ushikubo H: Stimulation of expression of the human endogenous retrovirus genome by female steroid hormones in human breast cancer cell line T47D. J Virol 1987, 61:2059-2062.
  • [23]Wang-Johanning F, Frost AR, Jian B, Epp L, Lu DW, Johanning GL: Quantitation of HERV-K env gene expression and splicing in human breast cancer. Oncogene 2003, 22:1528-1535.
  • [24]Wang-Johanning F, Frost AR, Johanning GL, Khazaeli MB, LoBuglio AF, Shaw DR, Strong TV: Expression of human endogenous retrovirus k envelope transcripts in human breast cancer. Clin Cancer Res 2001, 7:1553-1560.
  • [25]Willer A, Saussele S, Gimbel W, Seifarth W, Kister P, Leib-Mosch C, Hehlmann R: Two groups of endogenous MMTV related retroviral env transcripts expressed in human tissues. Virus Genes 1997, 15:123-133.
  • [26]Herbst H, Sauter M, Kuhler-Obbarius C, Loning T, Mueller-Lantzsch N: Human endogenous retrovirus (HERV)-K transcripts in germ cell and trophoblastic tumours. APMIS 1998, 106:216-220.
  • [27]Sauter M, Roemer K, Best B, Afting M, Schommer S, Seitz G, Hartmann M, Mueller-Lantzsch N: Specificity of antibodies directed against Env protein of human endogenous retroviruses in patients with germ cell tumors. Cancer Res 1996, 56:4362-4365.
  • [28]Flockerzi A, Ruggieri A, Frank O, Sauter M, Maldener E, Kopper B, Wullich B, Seifarth W, Muller-Lantzsch N, Leib-Mosch C, et al.: Expression patterns of transcribed human endogenous retrovirus HERV-K(HML-2) loci in human tissues and the need for a HERV Transcriptome Project. BMC Genomics 2008, 9:354. BioMed Central Full Text
  • [29]Ruprecht K, Ferreira H, Flockerzi A, Wahl S, Sauter M, Mayer J, Mueller-Lantzsch N: Human endogenous retrovirus family HERV-K(HML-2) RNA transcripts are selectively packaged into retroviral particles produced by the human germ cell tumor line Tera-1 and originate mainly from a provirus on chromosome 22q11.21. J Virol 2008, 82:10008-10016.
  • [30]Buscher K, Hahn S, Hofmann M, Trefzer U, Ozel M, Sterry W, Lower J, Lower R, Kurth R, Denner J: Expression of the human endogenous retrovirus-K transmembrane envelope, Rec and Np9 proteins in melanomas and melanoma cell lines. Melanoma Res 2006, 16:223-234.
  • [31]Hahn S, Ugurel S, Hanschmann KM, Strobel H, Tondera C, Schadendorf D, Lower J, Lower R: Serological response to human endogenous retrovirus K in melanoma patients correlates with survival probability. AIDS Res Hum Retroviruses 2008, 24:717-723.
  • [32]Mangeney M, Pothlichet J, Renard M, Ducos B, Heidmann T: Endogenous retrovirus expression is required for murine melanoma tumor growth in vivo. Cancer Res 2005, 65:2588-2591.
  • [33]Muster T, Waltenberger A, Grassauer A, Hirschl S, Caucig P, Romirer I, Fodinger D, Seppele H, Schanab O, Magin-Lachmann C, et al.: An endogenous retrovirus derived from human melanoma cells. Cancer Res 2003, 63:8735-8741.
  • [34]Hu L, Hornung D, Kurek R, Ostman H, Blomberg J, Bergqvist A: Expression of human endogenous gammaretroviral sequences in endometriosis and ovarian cancer. AIDS Res Hum Retroviruses 2006, 22:551-557.
  • [35]Wang-Johanning F, Liu J, Rycaj K, Huang M, Tsai K, Rosen DG, Chen DT, Lu DW, Barnhart KF, Johanning GL: Expression of multiple human endogenous retrovirus surface envelope proteins in ovarian cancer. Int J Cancer 2007, 120:81-90.
  • [36]Iwabuchi H, Kakihara T, Kobayashi T, Imai C, Tanaka A, Uchiyama M, Fukuda T: A gene homologous to human endogenous retrovirus overexpressed in childhood acute lymphoblastic leukemia. Leuk Lymphoma 2004, 45:2303-2306.
  • [37]Contreras-Galindo R, Kaplan MH, Leissner P, Verjat T, Ferlenghi I, Bagnoli F, Giusti F, Dosik MH, Hayes DF, Gitlin SD, Markovitz DM: Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J Virol 2008, 82:9329-9336.
  • [38]Dickerson F, Rubalcaba E, Viscidi R, Yang S, Stallings C, Sullens A, Origoni A, Leister F, Yolken R: Polymorphisms in human endogenous retrovirus K-18 and risk of type 2 diabetes in individuals with schizophrenia. Schizophr Res 2008, 104:121-126.
  • [39]Frank O, Giehl M, Zheng C, Hehlmann R, Leib-Mosch C, Seifarth W: Human endogenous retrovirus expression profiles in samples from brains of patients with schizophrenia and bipolar disorders. J Virol 2005, 79:10890-10901.
  • [40]Huang WJ, Liu ZC, Wei W, Wang GH, Wu JG, Zhu F: Human endogenous retroviral pol RNA and protein detected and identified in the blood of individuals with schizophrenia. Schizophr Res 2006, 83:193-199.
  • [41]Karlsson H, Bachmann S, Schroder J, McArthur J, Torrey EF, Yolken RH: Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc Natl Acad Sci USA 2001, 98:4634-4639.
  • [42]Sicat J, Sutkowski N, Huber BT: Expression of human endogenous retrovirus HERV-K18 superantigen is elevated in juvenile rheumatoid arthritis. J Rheumatol 2005, 32:1821-1831.
  • [43]Ehlhardt S, Seifert M, Schneider J, Ojak A, Zang KD, Mehraein Y: Human endogenous retrovirus HERV-K(HML-2) Rec expression and transcriptional activities in normal and rheumatoid arthritis synovia. J Rheumatol 2006, 33:16-23.
  • [44]Reynier F, Verjat T, Turrel F, Imbert PE, Marotte H, Mougin B, Miossec P: Increase in human endogenous retrovirus HERV-K (HML-2) viral load in active rheumatoid arthritis. Scand J Immunol 2009, 70:295-299.
  • [45]Freimanis G, Hooley P, Davari Ejtehadi H, Ali HA, Veitch A, Rylance PB, Alawi A, Axford J, Nevill A, Murray PG, Nelson PN: A role for human endogenous retrovirus-K (HML-2) in rheumatoid arthritis: investigating mechanisms of pathogenesis. Clin Exp Immunol 2010.
  • [46]Contreras-Galindo R, Kaplan MH, Markovitz DM, Lorenzo E, Yamamura Y: Detection of HERV-K(HML-2) viral RNA in plasma of HIV type 1-infected individuals. AIDS Res Hum Retroviruses 2006, 22:979-984.
  • [47]Contreras-Galindo R, Lopez P, Velez R, Yamamura Y: HIV-1 infection increases the expression of human endogenous retroviruses type K (HERV-K) in vitro. AIDS Res Hum Retroviruses 2007, 23:116-122.
  • [48]Stoye JP: Endogenous retroviruses: Still active after all these years? Current Biology 2001, 11:R914-R916.
  • [49]Kent WJ: BLAT--the BLAST-like alignment tool. Genome Res 2002, 12:656-664.
  • [50]Jha AR, Pillai SK, York VA, Sharp ER, Storm EC, Wachter DJ, Martin JN, Deeks SG, Rosenberg MG, Nixon DF, Garrison KE: Cross-sectional dating of novel haplotypes of HERV-K 113 and HERV-K 115 indicate these proviruses originated in Africa before Homo sapiens. Mol Biol Evol 2009, 26:2617-2626.
  • [51]Hughes JF, Coffin JM: Evidence for genomic rearrangements mediated by human endogenous retroviruses during primate evolution. Nat Genet 2001, 29:487-489.
  • [52]Romano CM, Ramalho RF, Zanotto PM: Tempo and mode of ERV-K evolution in human and chimpanzee genomes. Arch Virol 2006, 151:2215-2228.
  • [53]Costas J: Evolutionary dynamics of the human endogenous retrovirus family HERV-K inferred from full-length proviral genomes. J Mol Evol 2001, 53:237-243.
  • [54]Tonjes RR, Czauderna F, Kurth R: Genome-wide screening, cloning, chromosomal assignment, and expression of full-length human endogenous retrovirus type K. J Virol 1999, 73:9187-9195.
  • [55]Sugimoto J, Matsuura N, Kinjo Y, Takasu N, Oda T, Jinno Y: Transcriptionally active HERV-K genes: identification, isolation, and chromosomal mapping. Genomics 2001, 72:137-144.
  • [56]Gogvadze E, Stukacheva E, Buzdin A, Sverdlov E: Human-specific modulation of transcriptional activity provided by endogenous retroviral insertions. J Virol 2009, 83:6098-6105.
  • [57]Kazazian HH Jr: Mobile elements: drivers of genome evolution. Science 2004, 303:1626-1632.
  • [58]Ruda VM, Akopov SB, Trubetskoy DO, Manuylov NL, Vetchinova AS, Zavalova LL, Nikolaev LG, Sverdlov ED: Tissue specificity of enhancer and promoter activities of a HERV-K(HML-2) LTR. Virus Res 2004, 104:11-16.
  • [59]Buzdin A, Kovalskaya-Alexandrova E, Gogvadze E, Sverdlov E: At least 50% of human-specific HERV-K (HML-2) long terminal repeats serve in vivo as active promoters for host nonrepetitive DNA transcription. J Virol 2006, 80:10752-10762.
  • [60]van de Lagemaat LN, Medstrand P, Mager DL: Multiple effects govern endogenous retrovirus survival patterns in human gene introns. Genome Biol 2006, 7:R86. BioMed Central Full Text
  • [61]Mayer J, Ehlhardt S, Seifert M, Sauter M, Muller-Lantzsch N, Mehraein Y, Zang KD, Meese E: Human endogenous retrovirus HERV-K(HML-2) proviruses with Rec protein coding capacity and transcriptional activity. Virology 2004, 322:190-198.
  • [62]Magin C, Lower R, Lower J: cORF and RcRE, the Rev/Rex and RRE/RxRE homologues of the human endogenous retrovirus family HTDV/HERV-K. J Virol 1999, 73:9496-9507.
  • [63]Magin-Lachmann C, Hahn S, Strobel H, Held U, Lower J, Lower R: Rec (formerly Corf) function requires interaction with a complex, folded RNA structure within its responsive element rather than binding to a discrete specific binding site. J Virol 2001, 75:10359-10371.
  • [64]Armbruester V, Sauter M, Krautkraemer E, Meese E, Kleiman A, Best B, Roemer K, Mueller-Lantzsch N: A novel gene from the human endogenous retrovirus K expressed in transformed cells. Clin Cancer Res 2002, 8:1800-1807.
  • [65]Hughes JF, Coffin JM: Human endogenous retroviral elements as indicators of ectopic recombination events in the primate genome. Genetics 2005, 171:1183-1194.
  • [66]Johnson WE, Coffin JM: Constructing primate phylogenies from ancient retrovirus sequences. Proc Natl Acad Sci 1999, 96:10254-10260.
  • [67]Rhead B, Karolchik D, Kuhn RM, Hinrichs AS, Zweig AS, Fujita PA, Diekhans M, Smith KE, Rosenbloom KR, Raney BJ, et al.: The UCSC Genome Browser database: update 2010. Nucleic Acids Res 38:D613-619.
  • [68]Lebedev YB, Belonovitch OS, Zybrova NV, Khil PP, Kurdyukov SG, Vinogradova TV, Hunsmann G, Sverdlov ED: Differences in HERV-K LTR insertions in orthologous loci of humans and great apes. Gene 2000, 247:265-277.
  • [69]Jha AR, Nixon DF, Rosenberg MG, Martin JN, Deeks SG, Hudson RR, Garrison KE, Pillai SK: Human endogenous retrovirus K106 (HERV-K106) was infectious after the emergence of anatomically modern humans. PLoS One 2011, 6:e20234.
  • [70]Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD: Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2004, 2:E234.
  • [71]Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F: HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002, 110:521-529.
  • [72]Katzourakis A, Pereira V, Tristem M: Effects of recombination rate on human endogenous retrovirus fixation and persistence. J Virol 2007, 81:10712-10717.
  • [73]Melana SM, Nepomnaschy I, Hasa J, Djougarian A, Holland JF, Pogo BG: Detection of human mammary tumor virus proteins in human breast cancer cells. J Virol Methods 2010, 163:157-161.
  • [74]Mason AL, Zhang G: Linking human beta retrovirus infection with primary biliary cirrhosis. Gastroenterol Clin Biol 2010, 34:359-366.
  • [75]Bindra A, Muradrasoli S, Kisekka R, Nordgren H, Warnberg F, Blomberg J: Search for DNA of exogenous mouse mammary tumor virus-related virus in human breast cancer samples. J Gen Virol 2007, 88:1806-1809.
  • [76]Serafino A, Balestrieri E, Pierimarchi P, Matteucci C, Moroni G, Oricchio E, Rasi G, Mastino A, Spadafora C, Garaci E, Vallebona PS: The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation. Exp Cell Res 2009, 315:849-862.
  • [77]Blomberg J, Benachenhou F, Blikstad V, Sperber G, Mayer J: Classification and nomenclature of endogenous retroviral sequences (ERVs): problems and recommendations. Gene 2009, 448:115-123.
  • [78]Mayer J, Blomberg J, Seal RL: A revised nomenclature for transcribed human endogenous retroviral loci. Mob DNA 2011, 2:7. BioMed Central Full Text
  • [79]Yoshida N, Abe H, Ohkuri T, Wakita D, Sato M, Noguchi D, Miyamoto M, Morikawa T, Kondo S, Ikeda H, Nishimura T: Expression of the MAGE-A4 and NY-ESO-1 cancer-testis antigens and T cell infiltration in non-small cell lung carcinoma and their prognostic significance. Int J Oncol 2006, 28:1089-1098.
  • [80]Ikeda H, Lethe B, Lehmann F, van Baren N, Baurain JF, de Smet C, Chambost H, Vitale M, Moretta A, Boon T, Coulie PG: Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 1997, 6:199-208.
  • [81]Costas J, Naveira H: Evolutionary history of the human endogenous retrovirus family ERV9. Mol Biol Evol 2000, 17:320-330.
  • [82]van de Lagemaat LN, Gagnier L, Medstrand P, Mager DL: Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates. Genome Res 2005, 15:1243-1249.
  • [83]Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Kerin MJ: MicroRNAs as Novel Biomarkers for Breast Cancer. J Oncol 2009, 2009:950201.
  • [84]Armbruester V, Sauter M, Roemer K, Best B, Hahn S, Nty A, Schmid A, Philipp S, Mueller A, Mueller-Lantzsch N: Np9 protein of human endogenous retrovirus K interacts with ligand of numb protein X. J Virol 2004, 78:10310-10319.
  • [85]Ruprecht K, Mayer J, Sauter M, Roemer K, Mueller-Lantzsch N: Endogenous retroviruses and cancer. Cell Mol Life Sci 2008, 65:3366-3382.
  • [86]Kijima TE, Innan H: On the estimation of the insertion time of LTR retrotransposable elements. Mol Biol Evol 2010, 27:896-904.
  • [87]Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 2009, 106:9362-9367.
  • [88]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
  • [89]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 95-98.
  • [90]Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000, 132:365-386.
  • [91]Torrey EF, Webster M, Knable M, Johnston N, Yolken RH: The Stanley Foundation brain collection and Neuropathology Consortium. Schizophr Res 2000, 44:151-155.
  • [92]Kumar S, Tamura K, Jakobsen IB, Nei M: MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 2001, 17:1244-1245.
  • [93]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [94]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17:754-755.
  文献评价指标  
  下载次数:12次 浏览次数:9次