期刊论文详细信息
Molecular Pain
Spinal autophagy is differently modulated in distinct mouse models of neuropathic pain
Cristina Tassorelli4  Giacinto Bagetta3  Maria Tiziana Corasaniti1  Rossella Russo3  Giuseppe Pasquale Varano5  Maria Maiarù3  Laura Berliocchi2 
[1] Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;Centre of Neuropharmacology of Normal and Pathological Synaptic Plasticity, University Consortium for Adaptive Disorders and Head Pain, 87036 Rende, Cosenza, Italy;Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036 Rende, Cosenza, Italy;Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy;C. Mondino National Neurological Institute, Pavia, Italy
关键词: Chloroquine;    Beclin 1;    SQSTM1/p62;    LC3;    Autophagy;    Neuropathic pain;    Spared nerve injury;    Chronic constriction injury;    Spinal nerve ligation;   
Others  :  1135294
DOI  :  10.1186/1744-8069-11-3
 received in 2014-09-14, accepted in 2015-01-06,  发布年份 2015
PDF
【 摘 要 】

Background

Autophagy is a homeostatic degradative process essential for basal turnover of long-lived proteins and organelles as well as for removal of dysfunctional cellular components. Dysregulation of the autophagic machinery has been recently associated to several conditions including neurodegenerative diseases and cancer, but only very few studies have investigated its role in pain processing.

Results

We previously described autophagy impairment at the spinal cord in the experimental model of neuropathic pain induced by spinal nerve ligation (SNL). In this study, we characterized the main autophagic markers in two other common experimental models of neuropathic pain, the chronic constriction injury (CCI) and the spared nerve injury (SNI). The different modulation of LC3-I, Beclin 1 and p62 suggested that autophagy is differentially affected in the spinal dorsal horn depending on the type of peripheral injury. Confocal analysis of p62 distribution in the spinal dorsal horn indicated its presence mainly in NeuN-positive cell bodies and occasionally in glial processes, thus suggesting a predominant expression in the neuronal compartment. Finally, we investigated the consequences of autophagy impairment on pain behaviour by using the autophagy blocker cloroquine. Intrathecal chloroquine injection in naïve mice induced spinal accumulation of LC3 and p62 paralleled by significant mechanical hypersensitivity thus confirming the block in autophagosome clearance and suggesting the participation of the autophagic process in spinal mechanisms of pain processing. Altogether, our data indicate that spinal autophagy is differentially altered in different experimental pain models of neuropathic pain and that this process may be relevant for pain control.

【 授权许可】

   
2015 Berliocchi et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150307041550625.pdf 2164KB PDF download
Figure 6. 45KB Image download
Figure 5. 121KB Image download
Figure 4. 286KB Image download
Figure 3. 156KB Image download
Figure 2. 87KB Image download
Figure 1. 35KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Mizushima N, Komatsu M: Autophagy: renovation of cells and tissues. Cell 2011, 147:728-41.
  • [2]Awan MUF, Deng Y: Role of autophagy and its significance in cellular homeostasis. Appl Microbiol Biotechnol 2014, 98:5319-28.
  • [3]Mizushima N, Levine B, Cuervo AM, Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature 2008, 451:1069-75.
  • [4]Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, et al.: Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010, 90:1383-435.
  • [5]Feng Y, He D, Yao Z, Klionsky DJ: The machinery of macroautophagy. Cell Res 2014, 24:24-41.
  • [6]Laplante M, Sabatini DM: mTOR signaling in growth control and disease. Cell 2012, 149:274-93.
  • [7]Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al.: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000, 19:5720-8.
  • [8]Rabinowitz JD, White E: Autophagy and metabolism. Science 2010, 330:1344-8.
  • [9]Yang Z, Klionsky DJ: Eaten alive: a history of macroautophagy. Nat Cell Biol 2010, 12:814-22.
  • [10]He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, et al.: Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 2012, 481:511-5.
  • [11]Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, et al.: Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol 2008, 4:295-305.
  • [12]Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, et al.: Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci Off J Soc Neurosci 2009, 29:13578-88.
  • [13]Levine B, Mizushima N, Virgin HW: Autophagy in immunity and inflammation. Nature 2011, 469:323-35.
  • [14]Choi KS: Autophagy and cancer. Exp Mol Med 2012, 44:109-20.
  • [15]Russo R, Berliocchi L, Adornetto A, Varano GP, Cavaliere F, Nucci C, et al.: Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo. Cell Death Dis 2011, 2:e144.
  • [16]Levine B, Kroemer G: Autophagy in the pathogenesis of disease. Cell 2008, 132:27-42.
  • [17]Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ: Potential therapeutic applications of autophagy. Nat Rev Drug Discov 2007, 6:304-12.
  • [18]Williams A, Jahreiss L, Sarkar S, Saiki S, Menzies FM, Ravikumar B, et al.: Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr Top Dev Biol 2006, 76:89-101.
  • [19]Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee J-H, et al.: Macroautophagy–a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 2005, 171:87-98.
  • [20]Menzies FM, Moreau K, Rubinsztein DC: Protein misfolding disorders and macroautophagy. Curr Opin Cell Biol 2011, 23:190-7.
  • [21]Berliocchi L, Russo R, Maiarù M, Levato A, Bagetta G, Corasaniti MT: Autophagy impairment in a mouse model of neuropathic pain. Mol Pain 2011, 7:83. BioMed Central Full Text
  • [22]Zhang E, Yi M-H, Ko Y, Kim H-W, Seo JH, Lee YH, et al.: Expression of LC3 and Beclin 1 in the spinal dorsal horn following spinal nerve ligation-induced neuropathic pain. Brain Res 2013, 1519:31-9.
  • [23]Shi G, Shi J, Liu K, Liu N, Wang Y, Fu Z, et al.: Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia 2013, 61:504-12.
  • [24]Marinelli S, Nazio F, Tinari A, Ciarlo L, D’Amelio M, Pieroni L, et al.: Schwann cell autophagy counteracts the onset and chronification of neuropathic pain. Pain 2014, 155:93-107.
  • [25]Bennett GJ, Xie YK: A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988, 33:87-107.
  • [26]Decosterd I, Woolf CJ: Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 2000, 87:149-58.
  • [27]Kim SH, Chung JM: An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992, 50:355-63.
  • [28]Franchi S, Valsecchi AE, Borsani E, Procacci P, Ferrari D, Zalfa C, et al.: Intravenous neural stem cells abolish nociceptive hypersensitivity and trigger nerve regeneration in experimental neuropathy. Pain 2012, 153:850-61.
  • [29]Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al.: Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012, 8:445-544.
  • [30]Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P: Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 2008, 90:313-23.
  • [31]Johansen T, Lamark T: Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011, 7:279-96.
  • [32]Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, et al.: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 2005, 171:603-14.
  • [33]Bauer CS, Nieto-Rostro M, Rahman W, Tran-Van-Minh A, Ferron L, Douglas L, et al.: The increased trafficking of the calcium channel subunit alpha2delta-1 to presynaptic terminals in neuropathic pain is inhibited by the alpha2delta ligand pregabalin. J Neurosci 2009, 29:4076-88.
  • [34]Luo ZD, Calcutt NA, Higuera ES, Valder CR, Song Y-H, Svensson CI, et al.: Injury type-specific calcium channel α2δ-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin. J Pharmacol Exp Ther 2002, 303:1199-205.
  • [35]Conte A, Khan N, Defazio G, Rothwell JC, Berardelli A: Pathophysiology of somatosensory abnormalities in Parkinson disease. Nat Rev Neurol 2013, 9:687-97.
  • [36]Brettschneider J, Kurent J, Ludolph A: Drug therapy for pain in amyotrophic lateral sclerosis or motor neuron disease. Cochrane Database Syst Rev 2013., 6CD005226
  • [37]Raudino F: Non-cognitive symptoms and related conditions in the Alzheimer’s disease: a literature review. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 2013, 34:1275-82.
  • [38]Mizushima N, Yoshimori T, Levine B: Methods in mammalian autophagy research. Cell 2010, 140:313-26.
  • [39]Castillo K, Valenzuela V, Matus S, Nassif M, Oñate M, Fuentealba Y, et al.: Measurement of autophagy flux in the nervous system in vivo. Cell Death Dis 2013, 4:e917.
  • [40]Suzuki K, Ohsumi Y: Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 2007, 581:2156-61.
  • [41]Pankiv S, Clausen TH, Lamark T, Brech A, Bruun J-A, Outzen H, et al.: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007, 282:24131-45.
  • [42]Komatsu M, Waguri S, Koike M, Sou Y-S, Ueno T, Hara T, et al.: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007, 131:1149-63.
  • [43]Sahani MH, Itakura E, Mizushima N: Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy 2014, 10:431-41.
  • [44]Yue Z, Friedman L, Komatsu M, Tanaka K: The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. Biochim Biophys Acta 2009, 1793:1496-507.
  • [45]Garcera A, Bahi N, Periyakaruppiah A, Arumugam S, Soler RM: Survival motor neuron protein reduction deregulates autophagy in spinal cord motoneurons in vitro. Cell Death Dis 2013, 4:e686.
  • [46]Komatsu M, Wang QJ, Holstein GR, Friedrich VL, Iwata J, Kominami E, et al.: Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A 2007, 104:14489-94.
  • [47]Yang Y, Coleman M, Zhang L, Zheng X, Yue Z: Autophagy in axonal and dendritic degeneration. Trends Neurosci 2013, 36:418-28.
  • [48]Hernandez D, Torres CA, Setlik W, Cebrián C, Mosharov EV, Tang G, et al.: Regulation of presynaptic neurotransmission by macroautophagy. Neuron 2012, 74:277-84.
  • [49]Matsuda S, Yuzaki M: AP-4: autophagy-four mislocalized proteins in axons. Autophagy 2008, 4:815-6.
  • [50]Rowland AM, Richmond JE, Olsen JG, Hall DH, Bamber BA: Presynaptic terminals independently regulate synaptic clustering and autophagy of GABAA receptors in Caenorhabditis elegans. J Neurosci Off J Soc Neurosci 2006, 26:1711-20.
  • [51]Kuner R: Central mechanisms of pathological pain. Nat Med 2010, 16:1258-66.
  • [52]Berliocchi L, Russo R, Tassorelli C, Morrone LA, Bagetta G, Corasaniti MT: Death in pain: peripheral nerve injury and spinal neurodegenerative mechanisms. Curr Opin Pharmacol 2012, 12:49-54.
  • [53]Polgár E, Hughes DI, Riddell JS, Maxwell DJ, Puskár Z, Todd AJ: Selective loss of spinal GABAergic or glycinergic neurons is not necessary for development of thermal hyperalgesia in the chronic constriction injury model of neuropathic pain. Pain 2003, 104:229-39.
  • [54]Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ: Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci Off J Soc Neurosci 2002, 22:6724-31.
  • [55]Inquimbert P, Bartels K, Babaniyi OB, Barrett LB, Tegeder I, Scholz J: Peripheral nerve injury produces a sustained shift in the balance between glutamate release and uptake in the dorsal horn of the spinal cord. Pain 2012, 153:2422-31.
  • [56]Zhao L, Zhu Y, Wang D, Chen M, Gao P, Xiao W, et al.: Morphine induces Beclin 1- and ATG5-dependent autophagy in human neuroblastoma SH-SY5Y cells and in the rat hippocampus. Autophagy 2010, 6:386-94.
  • [57]Hayashi Y, Koga Y, Zhang X, Peters C, Yanagawa Y, Wu Z, et al.: Autophagy in superficial spinal dorsal horn accelerates the cathepsin B-dependent morphine antinociceptive tolerance. Neuroscience 2014, 275:384-94.
  • [58]Costigan M, Scholz J, Woolf CJ: Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci 2009, 32:1-32.
  • [59]Wu Y-T, Tan H-L, Shui G, Bauvy C, Huang Q, Wenk MR, et al.: Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 2010, 285:10850-61.
  • [60]Li X, Xu H, Liu Y, An N, Zhao S, Bao J: Autophagy modulation as a target for anticancer drug discovery. Acta Pharmacol Sin 2013, 34:612-24.
  • [61]Suh DH, Kim M-K, Kim HS, Chung HH, Song YS: Unfolded protein response to autophagy as a promising druggable target for anticancer therapy. Ann N Y Acad Sci 2012, 1271:20-32.
  • [62]Jiang P, Mizushima N: Autophagy and human diseases. Cell Res 2014, 24:69-79.
  • [63]Hylden JL, Wilcox GL: Intrathecal morphine in mice: a new technique. Eur J Pharmacol 1980, 67:313-6.
  • [64]Spampinato S, Trabucco A, Biasiotta A, Biagioni F, Cruccu G, Copani A, et al.: Hyperalgesic activity of kisspeptin in mice. Mol Pain 2011, 7:90. BioMed Central Full Text
  • [65]Seltzer Z, Dubner R, Shir Y: A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 1990, 43:205-18.
  • [66]Fuchs PN, Roza C, Sora I, Uhl G, Raja SN: Characterization of mechanical withdrawal responses and effects of mu-, delta- and kappa-opioid agonists in normal and mu-opioid receptor knockout mice. Brain Res 1999, 821:480-6.
  • [67]Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL: Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53:55-63.
  文献评价指标  
  下载次数:28次 浏览次数:4次