期刊论文详细信息
Reproductive Biology and Endocrinology
Transcriptome profiling of mice testes following low dose irradiation
Henrik Leffers1  Kristian Almstrup1  Søren Brunak2  Henrik Bjørn Nielsen4  John Erik Nielsen1  Marlene Danner Dalgaard1  Masami Tanaka3  Kirstine C Belling4 
[1] Department of Growth and Reproduction, Rigshospitalet, 2100 Copenhagen, Denmark;Department of Disease Systems Biology, Faculty of Health Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3A, 2200 Copenhagen, Denmark;Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki 216-8511 Japan;Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Lyngby, Denmark
关键词: Hyperplasia;    Leydig cell;    Clustering;    Microarray;    Transcriptomics;    Gene expression;    Irradiation;    Testis;    Mice;   
Others  :  811625
DOI  :  10.1186/1477-7827-11-50
 received in 2013-02-12, accepted in 2013-05-16,  发布年份 2013
PDF
【 摘 要 】

Background

Radiotherapy is used routinely to treat testicular cancer. Testicular cells vary in radio-sensitivity and the aim of this study was to investigate cellular and molecular changes caused by low dose irradiation of mice testis and to identify transcripts from different cell types in the adult testis.

Methods

Transcriptome profiling was performed on total RNA from testes sampled at various time points (n = 17) after 1 Gy of irradiation. Transcripts displaying large overall expression changes during the time series, but small expression changes between neighbouring time points were selected for further analysis. These transcripts were separated into clusters and their cellular origin was determined. Immunohistochemistry and in silico quantification was further used to study cellular changes post-irradiation (pi).

Results

We identified a subset of transcripts (n = 988) where changes in expression pi can be explained by changes in cellularity. We separated the transcripts into five unique clusters that we associated with spermatogonia, spermatocytes, early spermatids, late spermatids and somatic cells, respectively. Transcripts in the somatic cell cluster showed large changes in expression pi, mainly caused by changes in cellularity. Further investigations revealed that the low dose irradiation seemed to cause Leydig cell hyperplasia, which contributed to the detected expression changes in the somatic cell cluster.

Conclusions

The five clusters represent gene expression in distinct cell types of the adult testis. We observed large expression changes in the somatic cell profile, which mainly could be attributed to changes in cellularity, but hyperplasia of Leydig cells may also play a role. We speculate that the possible hyperplasia may be caused by lower testosterone production and inadequate inhibin signalling due to missing germ cells.

【 授权许可】

   
2013 Belling et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709070054984.pdf 1871KB PDF download
Figure 4. 47KB Image download
Figure 3. 403KB Image download
Figure 2. 69KB Image download
Figure 1. 119KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Jahnukainen K, Ehmcke J, Hou M, Schlatt S: Testicular function and fertility preservation in male cancer patients. Best Pract Res Clin Endocrinol Metab 2011, 25:287-302.
  • [2]van der Meer Y, Huiskamp R, Davids JA, van der Tweel I, de Rooij DG: The sensitivity of quiescent and proliferating mouse spermatogonial stem cells to X irradiation. Radiat Res 1992, 130:289-295.
  • [3]van der Meer Y, Huiskamp R, Davids JA, van der Tweel I, de Rooij DG: The sensitivity to X rays of mouse spermatogonia that are committed to differentiate and of differentiating spermatogonia. Radiat Res 1992, 130:296-302.
  • [4]Oakberg EF: Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am J Anat 1956, 99:507-516.
  • [5]Sonne SB, Almstrup K, Dalgaard M, Juncker AS, Edsgard D, Ruban L, Harrison NJ, Schwager C, Abdollahi A, Huber PE, et al.: Analysis of gene expression profiles of microdissected cell populations indicates that testicular carcinoma in situ is an arrested gonocyte. Cancer Res 2009, 69:5241-5250.
  • [6]Mortensen MS, Gundgaard MG, Daugaard G: Treatment options for carcinoma in situ testis. Int J Androl 2011, 34:e32-e36.
  • [7]Zhang Z, Shao S, Shetty G, Meistrich ML: Donor Sertoli cells transplanted into irradiated rat testes stimulate partial recovery of endogenous spermatogenesis. Reproduction 2009, 137:497-508.
  • [8]Delic JI, Hendry JH, Morris ID, Shalet SM: Leydig cell function in the pubertal rat following local testicular irradiation. Radiother Oncol 1986, 5:29-37.
  • [9]Delic JI, Hendry JH, Morris ID, Shalet SM: Serum androgen binding protein and follicle stimulating hormone as indices of Sertoli cell function in the irradiated testis. Br J Cancer Suppl 1986, 7:105-107.
  • [10]Shah FJ, Tanaka M, Nielsen JE, Iwamoto T, Kobayashi S, Skakkebaek NE, Leffers H, Almstrup K: Gene expression profiles of mouse spermatogenesis during recovery from irradiation. Reprod Biol Endocrinol 2009, 7:130. BioMed Central Full Text
  • [11]Ivell R, Spiess AN: Analysing differential gene expression in the testis. Berlin: Springer; 2002.
  • [12]The R project. http://www.r-project.org webcite
  • [13]Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19:185-193.
  • [14]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80. BioMed Central Full Text
  • [15]Smyth GK, Speed T: Normalization of cDNA microarray data. Methods 2003, 31:265-273.
  • [16]Almstrup K, Nielsen JE, Hansen MA, Tanaka M, Skakkebaek NE, Leffers H: Analysis of cell-type-specific gene expression during mouse spermatogenesis. Biol Reprod 2004, 70:1751-1761.
  • [17]Shima JE, McLean DJ, McCarrey JR, Griswold MD: The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol Reprod 2004, 71:319-330.
  • [18]Acharya KK, Chandrashekar DS, Chitturi N, Shah H, Malhotra V, Sreelakshmi KS, Deepti H, Bajpai A, Davuluri S, Bora P, Rao L: A novel tissue-specific meta-analysis approach for gene expression predictions, initiated with a mammalian gene expression testis database. BMC Genomics 2010, 11:467. BioMed Central Full Text
  • [19]Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003, 4:P3. BioMed Central Full Text
  • [20]da Huang W, Sherman BT, Stephens R, Baseler MW, Lane HC, Lempicki RA: DAVID gene ID conversion tool. Bioinformation 2008, 2:428-430.
  • [21]Johnston DS, Wright WW, Dicandeloro P, Wilson E, Kopf GS, Jelinsky SA: Stage-specific gene expression is a fundamental characteristic of rat spermatogenic cells and Sertoli cells. Proc Natl Acad Sci U S A 2008, 105:8315-8320.
  • [22]Reijo RA, Dorfman DM, Slee R, Renshaw AA, Loughlin KR, Cooke H, Page DC: DAZ family proteins exist throughout male germ cell development and transit from nucleus to cytoplasm at meiosis in humans and mice. Biol Reprod 2000, 63:1490-1496.
  • [23]Hansen MA, Nielsen JE, Tanaka M, Almstrup K, Skakkebaek NE, Leffers H: Identification and expression profiling of 10 novel spermatid expressed CYPT genes. Mol Reprod Dev 2006, 73:568-579.
  • [24]Sassone-Corsi P: Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 2002, 296:2176-2178.
  • [25]Schmidt EE, Schibler U: High accumulation of components of the RNA polymerase II transcription machinery in rodent spermatids. Development 1995, 121:2373-2383.
  • [26]Holstein AF, Schulze W, Davidoff M: Understanding spermatogenesis is a prerequisite for treatment. Reprod Biol Endocrinol 2003, 1:107. BioMed Central Full Text
  • [27]Miller D, Brinkworth M, Iles D: Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 2010, 139:287-301.
  • [28]Godmann M, Auger V, Ferraroni-Aguiar V, Di Sauro A, Sette C, Behr R, Kimmins S: Dynamic regulation of histone H3 methylation at lysine 4 in mammalian spermatogenesis. Biol Reprod 2007, 77:754-764.
  • [29]Hermo L, Pelletier RM, Cyr DG, Smith CE: Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 2: changes in spermatid organelles associated with development of spermatozoa. Microsc Res Tech 2010, 73:279-319.
  • [30]Baba T, Azuma S, Kashiwabara S, Toyoda Y: Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization. J Biol Chem 1994, 269:31845-31849.
  • [31]de Catalfo GE H, de Alaniz MJ, Marra CA: Influence of commercial dietary oils on lipid composition and testosterone production in interstitial cells isolated from rat testis. Lipids 2009, 44:345-357.
  • [32]Premalatha R, Jubendradass R, Rani SJ, Srikumar K, Mathur PP: A phytooxysterol, 28-homobrassinolide modulates Rat testicular steroidogenesis in normal and diabetic rats. Reprod Sci 2013, 20:589-596.
  • [33]Stocco DM, Clark BJ: Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 1996, 17:221-244.
  • [34]Aitken RJ, Roman SD: Antioxidant systems and oxidative stress in the testes. Adv exper med biol 2008, 636:154-171.
  • [35]Colpi GM, Contalbi GF, Nerva F, Sagone P, Piediferro G: Testicular function following chemo-radiotherapy. Eur J Obstet Gynecol Reprod Biol 2004, 113(Suppl 1):S2-S6.
  • [36]Giwercman A, von der Maase H, Berthelsen JG, Rorth M, Bertelsen A, Skakkebaek NE: Localized irradiation of testes with carcinoma in situ: effects on Leydig cell function and eradication of malignant germ cells in 20 patients. J Clin Endocrinol Metab 1991, 73:596-603.
  • [37]Petersen PM, Giwercman A, Daugaard G, Rorth M, Petersen JH, Skakkeaek NE, Hansen SW, von der Maase H: Effect of graded testicular doses of radiotherapy in patients treated for carcinoma-in-situ in the testis. J Clin Oncol 2002, 20:1537-1543.
  • [38]Shapiro E, Kinsella TJ, Makuch RW, Fraass BA, Glatstein E, Rosenberg SA, Sherins RJ: Effects of fractionated irradiation of endocrine aspects of testicular function. J Clin Oncol 1985, 3:1232-1239.
  • [39]Mortensen MS, Gundgaard MG, Daugaard G: Treatment options for carcinoma in situ testis. Int J Androl 2011, 34:e32-36.
  • [40]Holm M, Rajpert-De Meyts E, Andersson AM, Skakkebaek NE: Leydig cell micronodules are a common finding in testicular biopsies from men with impaired spermatogenesis and are associated with decreased testosterone/LH ratio. J Pathol 2003, 199:378-386.
  • [41]Petersen PM, Daugaard G, Rorth M, Skakkebaek NE: Endocrine function in patients treated for carcinoma in situ in the testis with irradiation. APMIS 2003, 111:93-98. discussion 98–99
  • [42]Rich KA, Kerr JB, de Kretser DM: Evidence for Leydig cell dysfunction in rats with seminiferous tubule damage. Mol Cell Endocrinol 1979, 13:123-135.
  • [43]Bang AK, Petersen JH, Petersen PM, Andersson AM, Daugaard G, Jorgensen N: Testosterone production is better preserved after 16 than 20 Gray irradiation treatment against testicular carcinoma in situ cells. Int J Radiat Oncol Biol Phys 2009, 75:672-676.
  • [44]Sarkar PS, Paul S, Han J, Reddy S: Six5 is required for spermatogenic cell survival and spermiogenesis. Hum Mol Genet 2004, 13:1421-1431.
  • [45]Guitton N, Brouazin-Jousseaume V, Dupaix A, Jegou B, Chenal C: Radiation effect on rat Sertoli cell function in vitro and in vivo. Int J Radiat Biol 1999, 75:327-333.
  • [46]Kochar NK, Bateman AJ: Post-irradiation changes in Sertoli cells. J Reprod Fertil 1969, 18:265-273.
  文献评价指标  
  下载次数:81次 浏览次数:30次