期刊论文详细信息
Retrovirology
Reduced evolutionary rates in HIV-1 reveal extensive latency periods among replicating lineages
Thomas Leitner1  Taina T Immonen1 
[1] Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos 87545, NM, USA
关键词: Dynamic modeling;    False discovery rate;    Molecular clock;    Phylogenetics;    HIV-1 latency;   
Others  :  1152281
DOI  :  10.1186/s12977-014-0081-0
 received in 2014-06-19, accepted in 2014-09-01,  发布年份 2014
PDF
【 摘 要 】

Background

HIV-1 can persist for the duration of a patient¿s life due in part to its ability to hide from the immune system, and from antiretroviral drugs, in long-lived latent reservoirs. Latent forms of HIV-1 may also be disproportionally involved in transmission. Thus, it is important to detect and quantify latency in the HIV-1 life cycle.

Results

We developed a novel molecular clock¿based phylogenetic tool to investigate the prevalence of HIV-1 lineages that have experienced latency. The method removes alternative sources that may affect evolutionary rates, such as hypermutation, recombination, and selection, to reveal the contribution of generation-time effects caused by latency. Our method was able to recover latent lineages with high specificity and sensitivity, and low false discovery rates, even on relatively short branches on simulated phylogenies. Applying the tool to HIV-1 sequences from 26 patients, we show that the majority of phylogenetic lineages have been affected by generation-time effects in every patient type, whether untreated, elite controller, or under effective or failing treatment. Furthermore, we discovered extensive effects of latency in sequence data (gag, pol, and env) from reservoirs as well as in the replicating plasma population. To better understand our phylogenetic findings, we developed a dynamic model of virus-host interactions to investigate the proportion of lineages in the actively replicating population that have ever been latent. Assuming neutral evolution, our dynamic modeling showed that under most parameter conditions, it is possible for a few activated latent viruses to propagate so that in time, most HIV-1 lineages will have been latent at some time in their past.

Conclusions

These results suggest that cycling in and out of latency plays a major role in the evolution of HIV-1. Thus, no aspect of HIV-1 evolution can be fully understood without considering latency - including treatment, drug resistance, immune evasion, transmission, and pathogenesis.

【 授权许可】

   
2014 Immonen and Leitner; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406152900667.pdf 585KB PDF download
Figure 4. 152KB Image download
Figure 3. 46KB Image download
Figure 2. 38KB Image download
Figure 1. 24KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Pace MJ, Agosto L, Graf EH, O¿Doherty U: HIV reservoirs and latency models. Virology 2011, 411(2):344-354.
  • [2]Ruff CT, Ray SC, Kwon P, Zinn R, Pendleton A, Hutton N, Ashworth R, Gange S, Quinn TC, Siliciano RF, Persaud D: Persistence of wild-type virus and lack of temporal structure in the latent reservoir for human immunodeficiency virus type 1 in pediatric patients with extensive antiretroviral exposure. J Virol 2002, 76(18):9481-9492.
  • [3]Joos B, Fischer M, Kuster H, Pillai SK, Wong JK, Boni J, Hirschel B, Weber R, Trkola A, Gunthard HF: HIV rebounds from latently infected cells, rather than from continuing low-level replication. Proc Natl Acad Sci U S A 2008, 105(43):16725-16730.
  • [4]Pomerantz RJ: Reservoirs, sanctuaries, and residual disease: the hiding spots of HIV-1. HIV Clin Trials 2003, 4(2):137-143.
  • [5]Davey RT Jr, Bhat N, Yoder C, Chun TW, Metcalf JA, Dewar R, Natarajan V, Lempicki RA, Adelsberger JW, Miller KD, Kovacs JA, Polis MA, Walker RE, Falloon J, Masur H, Gee D, Baseler M, Dimitrov DS, Fauci AS, Lane HC: HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci U S A 1999, 96(26):15109-15114.
  • [6]Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ: The challenge of finding a cure for HIV infection. Science 2009, 323(5919):1304-1307.
  • [7]Deeks SG: HIV: shock and kill. Nature 2012, 487(7408):439-440.
  • [8]Archin NM, Margolis DM: Emerging strategies to deplete the HIV reservoir. Curr Opin Infect Dis 2014, 27(1):29-35.
  • [9]Vrancken B, Rambaut A, Suchard MA, Drummond A, Baele G, Derdelinckx I, Van Wijngaerden E, Vandamme AM, Van Laethem K, Lemey P: The genealogical population dynamics of HIV-1 in a large transmission chain: bridging within and among host evolutionary rates. PLoS Comput Biol 2014, 10(4):e1003505.
  • [10]Lythgoe KA, Fraser C: New insights into the evolutionary rate of HIV-1 at the within-host and epidemiological levels. Proc Biol Sci 2012, 279(1741):3367-3375.
  • [11]Redd AD, Collinson-Streng AN, Chatziandreou N, Mullis CE, Laeyendecker O, Martens C, Ricklefs S, Kiwanuka N, Nyein PH, Lutalo T, Grabowski MK, Kong X, Manucci J, Sewankambo N, Wawer MJ, Gray RH, Porcella SF, Fauci AS, Sagar M, Serwadda D, Quinn TC: Previously transmitted HIV-1 strains are preferentially selected during subsequent sexual transmissions. J Infect Dis 2012, 206(9):1433-1442.
  • [12]Alizon S, Fraser C: Within-host and between-host evolutionary rates across the HIV-1 genome. Retrovirology 2013, 10:49. BioMed Central Full Text
  • [13]Drummond AJ, Ho SY, Phillips MJ, Rambaut A: Relaxed phylogenetics and dating with confidence. PLoS Biol 2006, 4(5):e88.
  • [14]Leitner T, Albert J: The molecular clock of HIV-1 unveiled through analysis of a known transmission history. Proc Natl Acad Sci U S A 1999, 96:10752-10757.
  • [15]Skar H, Gutenkunst RN, Wilbe Ramsay K, Alaeus A, Albert J, Leitner T: Daily sampling of an HIV-1 patient with slowly progressing disease displays persistence of multiple env subpopulations consistent with neutrality. PLoS One 2011, 6(8):e21747.
  • [16]O¿Connell KA, Brennan TP, Bailey JR, Ray SC, Siliciano RF, Blankson JN: Control of HIV-1 in elite suppressors despite ongoing replication and evolution in plasma virus. J Virol 2010, 84(14):7018-7028.
  • [17]Bailey JR, Sedaghat AR, Kieffer T, Brennan T, Lee PK, Wind-Rotolo M, Haggerty CM, Kamireddi AR, Liu Y, Lee J, Persaud D, Gallant JE, Cofrancesco J Jr, Quinn TC, Wilke CO, Ray SC, Siliciano JD, Nettles RE, Siliciano RF: Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+ T cells. J Virol 2006, 80(13):6441-6457.
  • [18]Karlsson AC, Lindkvist A, Lindback S, Gaines H, Sonnerborg A: Recent origin of human immunodeficiency virus type 1 variants in resting CD4+ T lymphocytes in untreated and suboptimally treated subjects. J Infect Dis 2001, 184(11):1392-1401.
  • [19]Monie D, Simmons RP, Nettles RE, Kieffer TL, Zhou Y, Zhang H, Karmon S, Ingersoll R, Chadwick K, Margolick JB, Quinn TC, Ray SC, Wind-Rotolo M, Miller M, Persaud D, Siliciano RF: A novel assay allows genotyping of the latent reservoir for human immunodeficiency virus type 1 in the resting CD4+ T cells of viremic patients. J Virol 2005, 79(8):5185-5202.
  • [20]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 1995, 57:289-300.
  • [21]Strimmer K: A unified approach to false discovery rate estimation. BMC Bioinformatics 2008, 9:303. BioMed Central Full Text
  • [22]Pounds S, Cheng C: Robust estimation of the false discovery rate. Bioinformatics 2006, 22(16):1979-1987.
  • [23]Stumpf MP, McVean GA: Estimating recombination rates from population-genetic data. Nat Rev Genet 2003, 4(12):959-968.
  • [24]O¿Reilly PF, Birney E, Balding DJ: Confounding between recombination and selection, and the Ped/Pop method for detecting selection. Genome Res 2008, 18(8):1304-1313.
  • [25]Neher RA, Leitner T: Recombination rate and selection strength in HIV intra-patient evolution. PLoS Comput Biol 2010, 6:e1000660.
  • [26]Rong L, Perelson AS: Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips. Math Biosci 2009, 217(1):77-87.
  • [27]Rong L, Perelson AS: Modeling latently infected cell activation: viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy. PLoS Comput Biol 2009, 5(10):e1000533.
  • [28]Kieffer TL, Finucane MM, Nettles RE, Quinn TC, Broman KW, Ray SC, Persaud D, Siliciano RF: Genotypic analysis of HIV-1 drug resistance at the limit of detection: virus production without evolution in treated adults with undetectable HIV loads. J Infect Dis 2004, 189(8):1452-1465.
  • [29]Tobin NH, Learn GH, Holte SE, Wang Y, Melvin AJ, McKernan JL, Pawluk DM, Mohan KM, Lewis PF, Mullins JI, Frenkel LM: Evidence that low-level viremias during effective highly active antiretroviral therapy result from two processes: expression of archival virus and replication of virus. J Virol 2005, 79(15):9625-9634.
  • [30]Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K: FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol 2013, 30(5):1196-1205.
  • [31]O¿Brien JD, Minin VN, Suchard MA: Learning to count: robust estimates for labeled distances between molecular sequences. Mol Biol Evol 2009, 26(4):801-814.
  • [32]Delport W, Scheffler K, Botha G, Gravenor MB, Muse SV, Kosakovsky Pond SL: CodonTest: modeling amino acid substitution preferences in coding sequences. PLoS Comput Biol 2010, 6(8):e1000885.
  • [33]Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DI, Lai J, Blankson JN, Siliciano JD, Siliciano RF: Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 2013, 155(3):540-551.
  • [34]Katoh K, Toh H: Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008, 9(4):286-298.
  • [35]Rose PP, Korber BT: Detecting hypermutations in viral sequences with an emphasis on G$\rightarrow$A hypermutation. Bioinformatics 2000, 16:400-401.
  • [36]Bruen TC, Philippe H, Bryant D: A simple and robust statistical test for detecting the presence of recombination. Genetics 2006, 172(4):2665-2681.
  • [37]R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2003.
  • [38]Salemi M, Gray RR, Goodenow MM: An exploratory algorithm to identify intra-host recombinant viral sequences. Mol Phylogenet Evol 2008, 49(2):618-628.
  • [39]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52(5):696-704.
  • [40]Ramratnam B, Mittler JE, Zhang L, Boden D, Hurley A, Fang F, Macken CA, Perelson AS, Markowitz M, Ho DD: The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy. Nat Med 2000, 6(1):82-85.
  • [41]Zhang L, Ramratnam B, Tenner-Racz K, He Y, Vesanen M, Lewin S, Talal A, Racz P, Perelson AS, Korber BT, Markowitz M, Ho DD: Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N Engl J Med 1999, 340(21):1605-1613.
  • [42]Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, Smith K, Lisziewicz J, Lori F, Flexner C, Quinn TC, Chaisson RE, Rosenberg E, Walker B, Gange S, Gallant J, Siliciano RF: Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 1999, 5(5):512-517.
  • [43]Siliciano JD, Kajdas J, Finzi D, Quinn T, Chadwick K, Margolick JB, Kovacs C, Gange S, Siliciano RF: Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 2003, 9(6):727-728.
  • [44]Soetaert K, Petzoldt T, Setzer R: Solving differential equations in R: package deSolve. J Stat Softw 2010, 33(9):1-25.
  文献评价指标  
  下载次数:172次 浏览次数:37次