期刊论文详细信息
Molecular Cytogenetics
Best diagnostic approach for the genetic evaluation of fetuses after intrauterine death in first, second or third trimester: QF-PCR, karyotyping and/or genome wide SNP array analysis
Dominique FCM Smeets1  Nicole de Leeuw1  Ilse Feenstra1  Brigitte HW Faas1  Angelique JA Kooper1 
[1] Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
关键词: SNP array;    Karyotyping;    QF-PCR;    DNA;    IUFD;    Intrauterine fetal death;   
Others  :  1150372
DOI  :  10.1186/1755-8166-7-6
 received in 2013-10-21, accepted in 2013-12-17,  发布年份 2014
PDF
【 摘 要 】

Background

The aim of this study was to evaluate the best diagnostic approach for the genetic analysis of samples from first, second and third trimester intrauterine fetal deaths (IUFDs). We examined a total of 417 IUFD samples from fetuses with and without congenital anomalies. On 414 samples, karyotyping (N = 46) and/or rapid aneuploidy testing by QF-PCR (N = 371) was performed). One hundred sixty eight samples with a normal test result were subsequently tested by genome wide Single Nucleotide Polymorphism (SNP) array analysis. Three samples were only analyzed by array.

Results

In 50 (12.0%) samples an aneuploidy was detected by QF-PCR and/or karyotyping, representing 47.1% of first, 13.2% of second and 3.4% of third trimester pregnancies. Karyotyping and QF-PCR failed in 4 (8.7%) and 7 (1.9%) samples, respectively, concerning mostly contaminated amniotic fluid samples from third trimester pregnancies.

Clinically relevant aberrations were identified in 4.2% (all fetuses with malformations) of the 168 samples tested by SNP array. Inherited copy number variants (CNVs) were detected in 5.4% and 8.9% showed CNVs of unknown clinical relevance as parental inheritance could not be studied yet. In a sample from a fetus suspect for Meckel-Grüber syndrome, the genotype information from the SNP array revealed various stretches of homozygosity, including one stretch encompassing the CEP290 gene. Subsequent CEP290 mutation analysis revealed a homozygous, pathogenic mutation in this gene.

Conclusions

Based on our experience we recommend QF-PCR as the first-line test in IUFD samples of first and second trimester pregnancies to exclude aneuploidy before performing array analysis. The chance to detect aneuploidy in third trimester pregnancies is relatively low and therefore array analysis can be performed as a first-tier test. A tissue sample, instead of amniotic fluid, is preferred because of a higher success rate in testing.

We emphasize the need for analysis of parental samples whenever a rare, unique CNV is detected to allow for better interpretation of such findings and to improve future pregnancy management. Furthermore, we illustrate the strength of SNP arrays for genotype analysis, even though we realize it is crucial to have detailed phenotypic information to make optimal use of the genotype data in finding candidate recessive genes that may be related to the fetal phenotype.

【 授权许可】

   
2014 Kooper et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150405172338714.pdf 1412KB PDF download
Figure 4. 90KB Image download
Figure 3. 12KB Image download
Figure 2. 106KB Image download
Figure 1. 26KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Silver RM: Fetal death. Obstet Gynecol 2007, 110(1):191.
  • [2]Korteweg FJ, Bouman K, Erwich JJ, Timmer A, Veeger NJ, Ravisé JM, Nijman TH, Holm JP: Cytogenetic analysis after evaluation of 750 fetal deaths: proposal for diagnostic workup. Obstet Gynecol 2008, 111(4):865-874.
  • [3]Warburton D, Kline J, Stein Z, Strobino B: Cytogenetic abnormalities in spontaneous abortions of recognized conceptions. In Perinatal Genetics: Diagnosis and Treatment. Edited by Porter IH, Hatcher NH, Willey AM. Orlando, Fla.: Academic Press; 1986:23-40.
  • [4]Naeye RL: Functionally important disorders of the placenta, umbilical cord, and fetal membranes. Hum Pathol 1987, 18:680-691.
  • [5]Heifetz SA: The umbilical cord: obstetrically important lesions. Clin Obstet Gynecol 1996, 39:571-587.
  • [6]Klimann HJ: Umbilical cord. In Encyclopedia of Reproduction, vol 4. Edited by Knobil E, Neill JD. San Diego: Academic; 1999:915-923.
  • [7]Schaeffer AJ, Chung J, Heretis K, Wong A, Ledbetter DH, Lese Martin C: Comparative genomic hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages. Am J Hum Genet 2004, 74(6):1168-1174.
  • [8]Jurkovic D, Overton C, Bender-Atik R: Diagnosis and management of first trimester miscarriage. BMJ 2013, 346:f3676.
  • [9]Simpson JL: Obstetrics. In Normal and Problem Pregnancies. 3rd edition. Edited by Gabbe SG, Niebyl JR, Simpson JL. New York, N.Y: Churchill Livingstone; 1996:717-742.
  • [10]Menten B, Swerts K, Delle Chiaie B, Janssens S, Buysse K, Philippé J, Speleman F: Array comparative genomic hybridization and flow cytometry analysis of spontaneous abortions and mors in utero samples. BMC Med Genet 2009, 14:10-89.
  • [11]Reddy UM, Page GP, Saade GR: The role of DNA microarrays in the evaluation of fetal death. Prenat Diagn 2012, 32(4):371-375.
  • [12]de Vries BB, Pfundt R, Leisink M, Koolen DA, Vissers LE, Janssen IM, Reijmersdal S, Nillesen WM, Huys EH, Leeuw N, Smeets D, Sistermans EA, Feuth T, van Ravenswaaij-Arts CM, van Kessel AG, Schoenmakers EF, Brunner HG, Veltman JA: Diagnostic genome profiling in mental retardation. Am J Hum Genet 2005, 77(4):606-616.
  • [13]Faas BH, van der Burgt I, Kooper AJ, Pfundt R, Hehir-Kwa JY, Smits AP, de Leeuw N: Identification of clinically significant, submicroscopic chromosome alterations and UPD in fetuses with ultrasound anomalies using genome-wide 250 k SNP array analysis. J Med Genet 2010, 47(9):586-594.
  • [14]Nannya Y, Sanada M, Nakazaki K, Hosoya N, Wang L, Hangaishi A, Kurokawa M, Chiba S, Bailey DK, Kennedy GC, Ogawa S: A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res 2005, 15(65(14)):6071-6079.
  • [15]Vissers LE, de Vries BB, Veltman JA: Genomic microarrays in mental retardation: from copy number variation to gene, from research to diagnosis. J Med Genet 2010, 47(5):289-297.
  • [16]de Leeuw N, Hehir-Kwa JY, Simons A, GeurtsvanKessel A, Smeets DF, Faas BH, Pfundt R: SNP array analysis in constitutional and cancer genome diagnostics--copy number variants, genotyping and quality control. Cytogenet Genome Res 2011, 135(3–4)):212.
  • [17]Lichtenbelt KD, Knoers NV, Schuring-Blom GH: From karyotyping to array-CGH in prenatal diagnosis. Cytogenet Genome Res 2011, 135(3–4):241-250.
  • [18]Wapner RJ, Martin CL, Levy B, Ballif BC, Eng CM, Zachary JM, Savage M, Platt LD, Saltzman D, Grobman WA, Klugman S, Scholl T, Simpson JL, McCall K, Aggarwal VS, Bunke B, Nahum O, Patel A, Lamb AN, Thom EA, Beaudet AL, Ledbetter DH, Shaffer LG, Jackson L: Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med 2012, 367(23):2175-2184.
  • [19]Rajcan-Separovic E: Chromosome microarrays in human reproduction. Hum Reprod Update 2012, 18(5):555-567.
  • [20]Faas BH, Feenstra I, Eggink AJ, Kooper AJ, Pfundt R, van Vugt JM, de Leeuw N: Non-targeted whole genome 250 K SNP array analysis as replacement for karyotyping in fetuses with structural ultrasound anomalies: evaluation of a one-year experience. Prenat Diagn 2012, 32(4):362-370.
  • [21]Robberecht C, Schuddinck V, Fryns JP, Vermeesch JR: Diagnosis of miscarriages by molecular karyotyping: benefits and pitfalls. Genet Med 2009, 11(9):646-654.
  • [22]Gao J, Liu C, Yao F, Hao N, Zhou J, Zhou Q, Zhang L, Liu X, Bian X, Liu J: Array-based comparative genomic hybridization is more informative than conventional karyotyping and fluorescence in situ hybridization in the analysis of first-trimester spontaneous abortion. Mol Cytogenet 2012, 16(5(1)):33.
  • [23]Church DM, Lappalainen I, Sneddon TP, Hinton J, Maguire M, Lopez J, Garner J, Paschall J, DiCuccio M, Yaschenko E, Scherer SW, Feuk L, Flicek P: Public data archives for genomic structural variation. Nat Genet 2010, 42:813-814.
  • [24]Wierenga KJ, Jiang Z, Yang AC, Mulvihill JJ, Tsinoremas NF: A clinical evaluation tool for SNP arrays, especially for autosomal recessive conditions in offspring of consanguineous parents. Genet Med 2013, 15(5):354-360.
  • [25]Hassold T, Chen N, Funkhouser J, Jooss T, Manuel B, Matsuura J, Matsuyama A, Wilson C, Yamane JA, Jacobs PA: A cytogenetic study of 1000 spontaneous abortions. Annals of Hum Genet 1980, 44:151-178.
  • [26]Kajii T, Ferrier A, Niikawa N, Takahara H, Ohama K, Avirachan S: Anatomic and chromosomal anomalies in 639 spontaneous abortions. Hum Genet 1980, 55:87-93.
  • [27]Byrne J, Warburton D, Kline J, Blanc W, Stein Z: Morphology of early fetal deaths and their chromosomal characteristics. Teratology 1985, 32:297-315.
  • [28]Ljunger E, Cnattingius S, Lundin C, Annerén G: Chromosomal anomalies in first-trimester miscarriages. Acta Obstet Gynecol Scand 2005, 84(11):1103-1107.
  • [29]Raca G, Artzer A, Thorson L, Huber S, Modaff P, Laffin J, Pauli RM: Array-based comparative genomic hybridization (aCGH) in the genetic evaluation of stillbirth. Am J Med Genet A 2009, 149A(11):2437-2443.
  • [30]Le Caignec C, Boceno M, Saugier-Veber P, Jacquemont S, Joubert M, David A, Frebourg T, Rival JM: Detection of genomic imbalances by array based comparative genomic hybridisation in fetuses with multiple malformations. J Med Genet 2005, 42(2):121-128.
  • [31]Vialard F, Molina Gomes D, Leroy B, Quarello E, Escalona A, Le Sciellour C, Serazin V, Roume J, Ville Y, de Mazancourt P, Selva J: Array comparative genomic hybridization in prenatal diagnosis: another experience. Fetal Diagn Ther 2009, 25(2):277-284.
  • [32]Warren JE, Turok DK, Maxwell TM, Brothman AR, Silver RM: Array comparative genomic hybridization for genetic evaluation of fetal loss between 10 and 20 weeks of gestation. Obstet Gynecol 2009, 114(5):1093-1102.
  • [33]Lee C, Iafrate A, Brothman A: Copy number variants and clinical cytogenetic diagnosis of constitutional disorders. Nat Genet 2007, 39:S48-S54.
  • [34]Vermeesch JR, Fiegler H, de Leeuw N, Szuhai K, Schoumans J, Ciccone R, Speleman F, Rauch A, Clayton-Smith J, Van Ravenswaaij C, Sanlaville D, Patsalis PC, Firth H, Devriendt K, Zuffardi O: Guidelines for molecular karyotyping in constitutional genetic diagnosis. Eur J Hum Genet 2007, 15:1105-1114.
  • [35]Kearney HM, Kearney JB, Conlin LK: Diagnostic implications of excessive homozygosity detected by SNP-based microarrays: consanguinity, uniparental disomy, and recessive single-gene mutations. Clin Lab Med 2011, 31(4):595-613.
  • [36]Reddy UM, Page GP, Saade GR, Silver RM, Thorsten VR, Parker CB, Pinar H, Willinger M, Stoll BJ, Heim-Hall J, Varner MW, Goldenberg RL, Bukowski R, Wapner RJ, Drews-Botsch CD, O’Brien BM, Dudley DJ, Levy B, NICHD Stillbirth Collaborative Research Network: Karyotype versus microarray testing for genetic abnormalities after stillbirth. N Engl J Med 2012, 367(23):2185-2193.
  • [37]Dhillon R, Hillman S, Morris R, McMullan D, Williams D, Coomarasamy A, Kilby M: Additional information from chromosomal microarray analysis (CMA) over conventional karyotyping when diagnosing chromosomal abnormalities in miscarriage: a systematic review and meta-analysis. BJOG 2013. doi:10.1111/1471-0528.12382
  • [38]Crotti L, Tester DJ, White WM, Bartos DC, Insolia R, Besana A, Kunic JD, Will ML, Velasco EJ, Bair JJ, Ghidoni A, Cetin I, Van Dyke DL, Wick MJ, Brost B, Delisle BP, Facchinetti F, George AL, Schwartz PJ, Ackerman MJ: Long QT syndrome-associated mutations in intrauterine fetal death. JAMA 2013, 309(14):1473-1482.
  • [39]de Ligt J, Boone PM, Pfundt R, Vissers LE, Richmond T, Geoghegan J, O’Moore K, de Leeuw N, Shaw C, Brunner HG, Lupski JR, Veltman JA, Hehir-Kwa JY: Detection of clinically relevant copy number variants with whole-exome sequencing. Hum Mutat 2013, 34(10):1439-1448.
  文献评价指标  
  下载次数:12次 浏览次数:41次