期刊论文详细信息
Reproductive Biology and Endocrinology
Metabolites involved in cellular communication among human cumulus-oocyte-complex and sperm during in vitro fertilization
Manuel Avilés3  Rafael Bernabeu1  Jorge Ten1  Leopoldo González-Brusi3  María Savirón5  Jesús Orduna5  Ángel Gil-Izquierdo2  María José Izquierdo-Rico3  Sonia Medina2  Jaime Guerrero1  Eva María García1  María José Gómez-Torres4 
[1] Instituto Bernabeu of Fertility and Gynecology, Alicante 03016, Spain;Research Group on Quality, Safety and Bioactivity of Plant Foods, Food Science and Technology Department, CEBAS-CSIC, Espinardo (Murcia), Spain;Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Campus Mare Nostrum, Espinardo 30100 and IMIB, Murcia, Spain;Department of Biotechnology, University of Alicante, Carretera de San Vicente s/n, Alicante 03016, Spain;Institute of Materials Science of Aragon, CSIC-University of Zaragoza, Zaragoza, 50009, Spain
关键词: Metabolomics;    Phytosphingosine;    Lysophosphatidylcholine;    Acrosome reaction;    Cumulus cells;   
Others  :  1233940
DOI  :  10.1186/s12958-015-0118-9
 received in 2015-05-28, accepted in 2015-10-22,  发布年份 2015
PDF
【 摘 要 】

Background

Fertilization is a key physiological process for the preservation of the species. Consequently, different mechanisms affecting the sperm and the oocyte have been developed to ensure a successful fertilization. Thus, sperm acrosome reaction is necessary for the egg coat penetration and sperm-oolema fusion. Several molecules are able to induce the sperm acrosome reaction; however, this process should be produced coordinately in time and in the space to allow the success of fertilization between gametes.

The goal of this study was to analyze the metabolites secreted by cumulus-oocyte-complex (COC) to find out new components that could contribute to the induction of the human sperm acrosome reaction and other physiological processes at the time of gamete interaction and fertilization.

Methods

For the metabolomic analysis, eighteen aliquots of medium were used in each group, containing: a) only COC before insemination and after 3 h of incubation; b) COC and capacitated spermatozoa after insemination and incubated for 16–20 hours; c) only capacitated sperm after 16–20 h in culture and d) only fertilization medium as control. Six patients undergoing assisted reproduction whose male partners provided normozoospermic samples were included in the study. Seventy-two COC were inseminated.

Results

The metabolites identified were monoacylglycerol (MAG), lysophosphatidylcholine (LPC) and phytosphingosine (PHS). Analysis by PCR and in silico of the gene expression strongly suggests that the cumulus cells contribute to the formation of the PHS and LPC.

Conclusions

LPC and PHS are secreted by cumulus cells during in vitro fertilization and they could be involved in the induction of human acrosome reaction (AR). The identification of new molecules with a paracrine effect on oocytes, cumulus cells and spermatozoa will provide a better understanding of gamete interaction.

【 授权许可】

   
2015 Gómez-Torres et al.

【 预 览 】
附件列表
Files Size Format View
20151124081055428.pdf 975KB PDF download
Fig. 4. 51KB Image download
Fig. 3. 12KB Image download
Fig. 2. 10KB Image download
Fig. 1. 29KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Bedford J, Kim H. Cumulus oophorus as a sperm sequestering device in vivo. J Exp Zool. 1993;265:321–8.
  • [2]Tanghe S, Van Soom A, Nauwynck H, Coryn M, de Kruif A. Functions of the cumulus oophorus during oocyte maturation, ovulation and fertilization. Mol Reprod Dev. 2002; 61:414-24.
  • [3]Bedford JM. What marsupial gametes disclose about gamete function in eutherian mammals. Reprod Fertil Dev. 1996; 8:569-80.
  • [4]Hizaki H, Segi E, Sugimoto Y, Hirose M, Saji, Ushikubi F et al.. Abortive expansion of the cumulus and impaired fertility in mice lacking the prostaglandin E receptor subtype EP(2). Proc Natl Acad Sci USA. 1999; 96:10501-6.
  • [5]Fülöp C, Szántó S, Mukhopadhyay D, Bardos T, Kamath RV, Rugg MS et al.. Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein-6 deficient mice. Development. 2003; 130:2253-61.
  • [6]Salustri A, Garlanda C, Hirsch E, De Acetis M, Maccagno A, Bottazzi B, et al. PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in vivo fertilization. Development. 2004;131:1577–86.
  • [7]Shimada M, Yanai Y, Okazaki T, Noma N, Kawashima I, Mori T et al.. Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemikine production via the TLR2 and TLR4 pathways in cumulus cells of ovulated COCs, with may enhance fertilization. Development. 2008; 135:2001-11.
  • [8]Tanii I, Aradate T, Matsuda K, Komiya A, Fuse H. PACAP-mediated sperm-cumulus cell interaction promotes fertilization. Reproduction. 2011; 2:163-71.
  • [9]Zhuo L, Yoneda M, Zhao M, Yingsung W, Yoshida N, Kitagawa Y et al.. Defect in SHAP-hyaluronan complex causes severe female infertility. A study by inactivation of the bikunin gene in mice. J Biol Chem. 2001; 276:7693-6.
  • [10]Yanagimachi R. Mammalian fertilization. In: The Physiology of Reproduction. Knobil E, Neil JD, editors. Raven Press, New York; 1994: p.189-317.
  • [11]Tesarik J, Pilka L, Drahorád J, Cechová D, Veselský L. The role of cumulus cell secreted proteins in the development of human sperm fertilizing ability: implication in IVF. Human Reprod. 1988; 3:129-32.
  • [12]Zhang L, Jiang S, Wozniak PJ, Yang X, Godke RA. Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro. Mol Reprod Dev. 1995;40:338–44.
  • [13]Tajik P, Niwa K, Murase T. Effects of different protein supplements in fertilization medium on in vitro penetration of cumulus-intact and cumulus-free bovine oocytes matured in culture. Theriogenology. 1993;40:949–58.
  • [14]Wang WH, Abeydeera LR, Fraser RL, Niwa K. Functional analysis using chlortetracyclin fluorescence and in vitro fertilization of frozen-thawed ejaculated boar sper- matozoa incubated in a protein free chemically defined medium. J Reprod Fertil. 1995;104:305–13.
  • [15]Suzuki K, Eriksson B, Shimizu H, Nagai T, Rodriguez- Martinez H. Effect of hyaluronan on monospermic penetration of porcine oocytes fertilized in vitro. Int J Androl. 2000;23:13–21.
  • [16]Tesarik J, Mendoza OC, Testart J. Effect of the human cumulus oophorus on movement characteristics of human capacitated spermatozoa. J Reprod Fertil. 1990; 88:665-75.
  • [17]Hong SJ, Chiu PC, Lee KF, Tse JMY, Ho PC, Yeung WSB. Establishment of a capillary-cumulus model to study the selection of sperm for fertilization by cumulus oophorus. Human Reprod. 2004; 19:1562-9.
  • [18]Mansour RT, Aboulghar MA, Serour GI, Abbas AM, Elattar I. The life span of sperm motility and pattern in cumulus coculture. Fertil Steril. 1995; 63:660-2.
  • [19]Hossain AM, Rizk B, Huff C, Helvacioglu A, Thorneycroft IH. Human sperm bioassay has potential in evaluating the quality of cumulus-oocyte complexes. Arch Androl. 1996; 37:7-10.
  • [20]Sun TT, Chung CM, Chan HC. Acrosome reaction in the cumulus oophorus revisted. Involvement of a novel sperm-released factor NYD-SP8. Protein Cell. 2011; 2:92-8.
  • [21]Franken DR, Bastiaan HS. Can a cumulus cell complex be used to select spermatozoa for assisted reproduction? Andrologia. 2009; 41:369-76.
  • [22]Roldan ER, Murase T, Shi QX. Exocytosis in spermatozoa in response to progesterone and zona pellucida. Science. 1994; 266:1578-81.
  • [23]Osman RA, Andria ML, Jones AD, Meizel S. Steroid induced exocytosis: The human sperm acrosome reaction. Biochem Biophys Res Commun. 1989; 160:828-33.
  • [24]Meizel S, Turner KO, Nuccitelli R. Progesterone triggers a wave of increased free calcium during the human sperm acrosome reaction. Dev Biol. 1997; 182:67-75.
  • [25]Melendrez CS, Meizel S, Berger T. Comparison of the ability of progesterone and heat solubilized porcine zona pellucida to initiate the porcine sperm acrosome reaction in vitro. Mol Reprod Dev. 1994;39:433–8.
  • [26]Harper CV, Joanne A, Cummerson JA, Michael RH, White MRH, Publicover SJ et al.. Dynamic resolution of acrosomal exocytosis in human sperm. J Cell Sci. 2008; 121:2130-5.
  • [27]Clark GF. The role carbohydrate recognition during human sperm-egg binding. Human Reprod. 2013; 28(3):566-77.
  • [28]Gupta SK, Bhandari B, Shrestha A, Biswal BK, Palaniappan C, Malhotra SS et al.. Mammalian zona pellucida glycoproteins: structure and function during fertilization. Cell Tissue Res. 2012; 349:665-78.
  • [29]Yanagimachi R. Mammalian sperm acrosome reaction: where does it begin before fertilization? Biol Reprod. 2011; 85:4-5.
  • [30]Yanagimachi R, Phillips DM. The status of acrosome caps of hamster spermatozoa immediately before fertilization in vivo. Gamete Res. 1984;9:1–19.
  • [31]Kopf GS, Gerton GL. The mammalian sperm acrosome and the acrosome reaction. In:Elements of Mammalian Fertilization. Basic concepts (Wassarman, Ed). Boca Raton, FL: CRC Press; 1990. p. 153-2013.
  • [32]Florman HM, Ducibella T. Fertilization in mammals. In: Neill JD, editor. Physiology of reproduction. San Diego (CA): Elsevier; 2006. p. 55-112.
  • [33]Gupta SK, Bhandari B. Acrosome reaction: relevance of zona pellucida glycoproteins. Asian J Androl. 2010; 13:97-105.
  • [34]Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y, Baba SA, et al. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci USA. 2011;108(12):4892–6. Epub 2011 Mar 7.
  • [35]Stock CE, Bates R, Lindsay KS, Edmonds DK, Fraser LR. Human oocyte-cumulus complexes stimulate the human acrosome reaction. J Reprod Fertil. 1989; 86:723-30.
  • [36]Carrell DT, Middleton RG, Peterson CM, Jones KP, Urry RL. Role of the cumulus in the selection of morphologically normal sperm and induction of the acrosome reaction during human in vitro fertilization. Arch Androl. 1993;31:133–7.
  • [37]Sullivan R, Duchesne C, Fahmy N, Morin N, Dionne P. Protein synthesis and acrosome reaction–inducing activity of human cumulus cells. Hum Reprod. 1990; 5:830-4.
  • [38]Fetterolf PM, Jurisicova A, Tyson JE, Casper RF. Conditioned medium from human cumulus oophorus cells stimulates human sperm velocity. Biol Reprod. 1994; 51:184-92.
  • [39]Bains R, Miles DM, Carson RJ, Adeghe J. Hyaluronic acid increases motility/ intracellular CA2þ concentration in human sperm in vitro. Arch Androl. 2001;47:119–25.
  • [40]Sun F, Bahat A, Gakamsky A, Girsh E, Katz N, Giojalas LC et al.. Human sperm chemotaxis: both the oocyte and its surrounding cumulus cells secrete sperm chemoattractants. Hum Reprod. 2005; 20:761-7.
  • [41]Gurevich M, Harel-Markowitz E, Marcus S, Shore LS, Shemesh M. Prostaglandin production by the oocyte cumulus complex around the time of fertilization and the effect of prostaglandin E on the development of the early bovine embryo. Reproduction, Fertility and Development. 1993; 5:281-3.
  • [42]Viggiano JM, Herrero MB, Cebral E, Boquet MG, de Gimeno MF. Prostaglandin synthesis by cumulus–oocyte complexes: effects on in vitro fertilization in mice. Prostaglandins, Leukotrienes, and Essential Fatty Acids. 1995;53:261–5.
  • [43]Jaiswal BS, Tur-Kaspa I, Dor J, Mashiach S, Eisenbach M. Human sperm chemotaxis: is progesterone a chemoattractant? Biology of Reproduction. 1999; 60:1314-9.
  • [44]Osman RA, Andria ML, Jones AD, Meizel S. Steroid induced exocytosis: the human sperm acrosome reaction. Biochemical and Biophysical Research Communications. 1989; 160:828-33.
  • [45]Chian RC, Ao A, Clarke HJ, Tulandi T, Tan SL. Production of steroids from human cumulus cells treated with different concentrations of gonadotropins during culture in vitro. Fertility and Sterility. 1999; 71:61-6.
  • [46]Vanderhyden BC, Tonary AM. Differential regulation of progesterone and estradiol production by mouse cumulus and mural granulosa cells by A factor(s) secreted by the oocyte. Biology of Reproduction. 1995; 53:1243-50.
  • [47]Yamashita Y, Shimada M, Okazaki T, Maeda T, Terada T. Production of progesterone from de novo-synthesized cholesterol in cumulus cells and its physiological role during meiotic resumption of porcine oocytes. Biology of Reproduction. 2003; 68:1193-98.
  • [48]Guidobaldi HA, Teves ME, Unates DR, Anastasia A, Giojalas LC. Progesterone from the cumulus cells is the sperm chemoattractant secreted by the rabbit oocyte cumulus complex. PLoS ONE. 2008; 3: Article ID e3040
  • [49]de Lamirande E, Tsai C, Harakat A, Gagnon C. Involvement of reactive oxygen species in human sperm acrosome reaction induced by A23187, lysophosphatidylcholine, and biological fluid ultrafiltrates. J Androl. 1998; 19:585-94.
  • [50]Garbi M, Rubinstein S, Lax Y, Breitbart H. Activation of Protein Kinase Cα in the Lysophosphatidic Acid-Induced Bovine Sperm Acrosome Reaction and Phospholipase D1 Regulation. Biol Reprod. 2000; 63:1271-7.
  • [51]Wassarman PM. The zona pellucida: a cost of many colors. Bioessays. 1987; 6:133-50.
  • [52]Pérez Aguirreburualde MS, Fernández S, Córdoba M. Acrosin activity regulation by protein Kinase C and tyrosine kinase in bovine sperm acrosome exocytosis induced by lysophosphatidylcholine. Reprod Dom Anim. 2012; 47:915-20.
  • [53]Hama K, Bandoh K, Kakehi Y, Aoki J, Arai H. Lysophosphatidic acid (LPA) receptors are activated differentially by biological fluids: possible role of LPA binding proteins in activation of LPA receptors. FEBS Lett. 2002; 523:187-92.
  • [54]Tanaka M, Kishi Y, Takanezawa Y, Kakehi Y, Aoki J, Arai H. Prostatic acid phosphatase degrades lysophosphatidic acid in seminal plasma. FEBS Lett. 2004; 571:197-204.
  • [55]Tokumura A, Miyake M, Nishioka Y, Yamano S, Aono T, Fukuzawa K. Production of lysophosphatidic acids by lysophospholipase D in human follicular fluids of in vitro fertilization patients. Biol Reprod. 1999; 61:195-9.
  • [56]Chen SU, Chou CH, Lee H, Ho CH, Lin CW, Yang YS. Lysophosphatidic acid up-regulates expression of interleukin-8 and −6 in granulose-lutein cells through its receptors and nuclear factor kappa B dependent pathways: implications for angiogenesis of corpus luteum and ovarian hyperstimulation syndrome. J Clin Endocrinol Metab. 2008; 93:935-43.
  • [57]Tesarik J. Comparision of acrosome reaction-inducing activities of human cumulus oophprus, follicular fluid ans ionophore A23187 in human sperm populations of proven fertilizing ability in vitro. J Reprod Fertil. 1985; 74:383-8.
  • [58]Suarez SS, Wolf DP, Meizel S. Induction of the acrosome reaction in human spermatozoa by a fraction of human follicular fluid. Gamete Res. 1986; 14:107-21.
  • [59]Calvo L, Vantman D, Banks S, Tezón J, Koukoulis G, Dennison L et al.. Follicular fluid induced acrosome reaction distinguishes a subgroup of men eith unexplained infertility not identified by semen analysis. Fertil Steril. 1989; 52:1048-54.
  • [60]WHO laboratory manual for the examination and processing of human semen (5th Edn). World Health Organization Press, Geneva; 2010.
  • [61]Mortimer D, Mortimer ST. Methods of sperm preparation for assisted reproduction. Ann Acad Med Singapore. 1992; 21:517-24.
  • [62]Aitken RJ, Brindle JP. Analysis of the ability of three probes targeting the outer acrosomal membrane or acrosomal contents to detect the acrosome reaction in human spermatozoa. Hum Reprod. 1993; 8:1663-9.
  • [63]Gómez-Torres MJ, Avilés M, Girela JL, Murcia V, Fernández-Colom PJ, Romeu A et al.. Characterization of the lectin binding pattern in human spermatozoa after swim-up selection. Histol Histopathol. 2012; 27:1621-8.
  • [64]Velthut-Meikas A, Simm J, Tuuri T, Tapanainen JS, Metsis M, Salumets A. Research resource: small RNA-seq of human granulosa cells reveals miRNAs in FSHR and aromatase genes. Mol Endocrinol. 2013; 27:1128-41.
  • [65]Yan L, Yang M, Guo H, Yang L, Wu J, Li R et al.. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013; 20:1131-9.
  • [66]Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng Y et al.. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013; 500:593-7.
  • [67]Mao C, Obeid LM. Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim Biophys Acta. 1781; 2008:424-34.
  • [68]Li CM, Park JH, He X, Levy B, Chen F, Arai K et al.. The human acid ceramidase gene (ASAH): structure, chromosomal location, mutation analysis, and expression. Genomics. 1999; 62:223-31.
  • [69]Mizutani Y, Kihara A, Igarashi Y. Identification of the human sphingolipid C4-hydroxylase, hDES2, and its up-regulation during keratinocyte differentiation. FEBS Lett. 2004; 563:93-7.
  • [70]Mao C, Xu R, Szulc ZM, Bielawska A, Galadari SH, Obeid LM. Cloning and characterization of a novel human alkaline ceramidase. A mammalian enzyme that hydrolyzes phytoceramide. J Biol Chem. 2001; 276:26577-88.
  • [71]Ikawa M, Inoue N, Benhham AM, Okabe M. Fertilization: a sperm’s journey to and interaction with the oocyte. J Clin Invest. 2010; 120:984-94.
  • [72]Vigil P, Orellana RF, Cortés ME. Modulation of spermatozoa acrosome reaction. Biol Res. 2011; 44:151-9.
  • [73]Fleming AD, Yanagimachi R. Effects of various lipids on the acrosome reaction and fertilizing capacity of guinea pig spermatozoa with special reference to the possible involvement of lysophospholipids in the acrosome reaction. Gamete Res. 1981; 4:253-73.
  • [74]Ohzu E, Yanagimachi R. Acceleration of acrosome reaction in hamster spermatozoa by lysolecithin. J Exp Zool. 1982; 224:259-63.
  • [75]Byrd W, Wolf DP. Acrosomal status in fresh and capacitated human ejaculated sperm. Biol Reprod. 1986; 34:859-69.
  • [76]Lepage N, Miron P, Hemmings R, Roberts KD, Langlais J. Distribution of lysophospholipids and metabolism of platelet-activating factor in human follicular and peritoneal fluids. J Reprod Fertil. 1993; 98:349-56.
  • [77]Glander HJ, Schiller J, Süss R, Paasch U, Grunewald S, Arnhold J. Deterioration of spermatozoal plasma membrane is associated with an increase of sperm lyso-phosphatidylcholines. Andrología. 2002; 34:360-6.
  • [78]Chen WY, Ni Y, Pan YM, Shi QX, Yan YY, Chen AJ et al.. GABA, progesterona and zona pellucida activation of PLA2 and regulation by MEK-ERK1/2 during acrosomal exocytosis in guinea pig spermatozoa. FEBS Lett. 2005; 579:4692-700.
  • [79]Shi QX, Chen WY, Yuan YY, Mao LZ, Yu SQ, Chen AJ et al.. Progeterone primes zona pellucid-induced activation of phospholipase A2 during acrosomal exocytosis in guinea pig spermatozoa. J Cell Physiol. 2005; 205:344-54.
  • [80]Yuan YY, Chen WY, Shi QX, Mao LZ, Yu SQ, Fang X et al.. Zona pellucid induces activation of phospholipase A2 during acrosomal exocytosis in guinea pig spermatozoa. Biol Reprod. 2003; 68:904-13.
  • [81]Li K, Jin JY, Chen WY, Shi QX, Ni Y, Roldan ER. Secretory phospholipase A2 group IID Is involved in progesterone-induced acrosomal exocytosis of human spermatozoa. J Androl. 2012; 33:975-83.
  • [82]Riffo MS, Párraga M. Role of phospholipase A2 in mammalian sperm-egg fusion: development of hamster oolemma fusibility by lysophosphatidylcholine. J Exp Zool. 1997; 279(1):81-8.
  • [83]Riffo M, Nieto A. Lysophosphatidylcholine induces changes in physicochemical, morphological, and functional properties of mouse zona pellucida: a possible role of phospholipase A2 in sperm-zona pellucida interaction. Mol Reprod Dev. 1999; 53(1):68-76.
  • [84]Bartke N, Hannun YA. Bioactive sphingolipids: metabolism and function. J Lipid Res. 2009; 50:S91-S96.
  • [85]Zhang Y, Li X, Becker KA, Gulbins E. Ceramide-enriched membrane domains–structure and function. Biochim Biophys Acta. 1788; 2009:178-83.
  • [86]Perez GI, Jurisicova A, Matikainen T, Moriyama T, Kim MR, Takai Y et al.. A central role for ceramide in the age-related acceleration of apoptosis in the female germline. FASEB J. 2005; 19:860-2.
  • [87]Okabe K, Keenan RW, Schmidt G. Phytosphingosine groups as quantitatively significant components of the sphingolipids of the mucosa of the small intestines of some mammalian species. Biochem Biophys Res Commun. 1968; 31:137-43.
  • [88]Iwamori M, Costello C, Moser HW. Analysis and quantitation of free ceramide containing nonhydroxy and 2-hydroxy fatty acids, and phytosphingosine by high-performance liquid chromatography. J Lipid Res. 1979; 20:86-96.
  • [89]Coderch L, Lopez O, de la Maza A, Parra JL. Ceramides and skin function. Am J Clin Dermatol. 2003; 4:107-29.
  • [90]Saisuga D, Shiba K, Inoue A, Hama K, Okutani M, Iida N et al.. Simultaneous quantitation of sphingoid bases and their phosphates in biological samples by liquid chromatography/electrospray ionization tandem mass spectrometry. Anal Bioanal Chem. 2012; 403:1897-1905.
  • [91]Suhaiman L, De Blas GA, Obeid LM, Darszon MLS, Belmonte SA. Sphingosine 1-Phosphate and Sphingosine Kinase are involved in a novel signaling pathway leading to acrosomal exocytosis. J Biol Chem. 2010; 285:16302-16314.
  • [92]Ternes P, Franke S, Zähringer U, Sperling P, Heinz E. Identification and characterization of a sphingolipid delta 4-desaturase family. J Biol Chem. 2002; 277:25512-8.
  • [93]O'Toole CM, Roldan ER, Fraser LR. Protein kinase C activation during progesterone-stimulated acrosomal exocytosis in human spermatozoa. Mol Hum Reprod. 1996; 12:921-7.
  • [94]Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993; 361:315-25.
  • [95]Evershed RP, Prescott MC, Spooner N, Goad LJ. Negative ion ammonia chemical ionization and electron impact ionization mass spectrometric analysis of steryl fatty acyl esters. Steroids. 1989; 53:285-309.
  文献评价指标  
  下载次数:16次 浏览次数:24次