| Molecular Neurodegeneration | |
| LRP1 is critical for the surface distribution and internalization of the NR2B NMDA receptor subtype | |
| Claus U Pietrzik3  Ulrich Schmitt4  Sascha Weggen1  Anton Roebroek2  Sabrina Meister3  Mariola Bednorz4  Wladislaw Maier3  | |
| [1] Department of Neuropathology Molecular Neuropathology, Heinrich Heine University Duesseldorf, Moorenstr. 5, Duesseldorf, 40225, Germany;Laboratory for Experimental Mouse Genetics, Center for Human Genetics KU Leuven, Herestraat 49, Leuven B-3000, Belgium;University Medical Center of the Johannes Gutenberg-University of Mainz Institute of Pathobiochemistry, Duesbergweg 6, Mainz 55099, Germany;Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University of Mainz, Untere Zahlbacher Str. 8, Mainz 55131, Germany | |
| 关键词: Cell surface expression; PSD95; NR2B receptor subunit; NR1; NMDA receptor; NPxY2 motif; LRP1; | |
| Others : 862235 DOI : 10.1186/1750-1326-8-25 |
|
| received in 2013-01-14, accepted in 2013-07-03, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
The N-methyl-D-aspartate receptors are key mediators of excitatory transmission and are implicated in many forms of synaptic plasticity. These receptors are heterotetrameres consisting of two obligatory NR1 and two regulatory subunits, usually NR2A or NR2B. The NR2B subunits are abundant in the early postnatal brain, while the NR2A/NR2B ratio increases during early postnatal development. This shift is driven by NMDA receptor activity. A functional interplay of the Low Density Lipoprotein Receptor Related Protein 1 (LRP1) NMDA receptor has already been reported. Such abilities as interaction of LRP1 with NMDA receptor subunits or its important role in tPa-mediated NMDA receptor signaling were already demonstrated. Moreover, mice harboring a conditional neuronal knock-out mutation of the entire Lrp1 gene display NMDA-associated behavioral changes. However, the exact role of LRP1 on NMDA receptor function remains still elusive.
Results
To provide a mechanistic explanation for such effects we investigated whether an inactivating knock-in mutation into the NPxY2 motif of LRP1 might influence the cell surface expression of LRP1 and NMDA receptors in primary cortical neurons. Here we demonstrate that a knock-in into the NPxY2 motif of LRP1 results in an increased surface expression of LRP1 and NR2B NMDA receptor subunit due to reduced endocytosis rates of LRP1 and the NR2B subunit in primary neurons derived from LRP1ΔNPxY2 animals. Furthermore, we demonstrate an altered phosphorylation pattern of S1480 and Y1472 in the NR2B subunit at the surface of LRP1ΔNPxY2 neurons, while the respective kinases Fyn and casein kinase II are not differently regulated compared with wild type controls. Performing co-immunoprecipitation experiments we demonstrate that binding of LRP1 to NR2B might be linked by PSD95, is phosphorylation dependent and this regulation mechanism is impaired in LRP1ΔNPxY2 neurons. Finally, we demonstrate hyperactivity and changes in spatial and reversal learning in LRP1ΔNPxY2 mice, confirming the mechanistic interaction in a physiological readout.
Conclusions
In summary, our data demonstrate that LRP1 plays a critical role in the regulation of NR2B expression at the cell surface and may provide a mechanistic explanation for the behavioral abnormalities detected in neuronal LRP1 knock-out animals reported earlier.
【 授权许可】
2013 Maier et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140725012335186.pdf | 1855KB | ||
| 66KB | Image | ||
| 65KB | Image | ||
| 59KB | Image | ||
| 81KB | Image | ||
| 84KB | Image | ||
| 114KB | Image |
【 图 表 】
【 参考文献 】
- [1]Herz J, Strickland DK: LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 2001, 108:779-784.
- [2]Reekmans SM, Pflanzner T, Gordts PL, Isbert S, Zimmermann P, Annaert W, Weggen S, Roebroek AJ, Pietrzik CU: Inactivation of the proximal NPXY motif impairs early steps in LRP1 biosynthesis. Cell Mol Life Sci 2010, 67:135-145.
- [3]Roebroek AJ, Reekmans S, Lauwers A, Feyaerts N, Smeijers L, Hartmann D: Mutant Lrp1 knock-in mice generated by recombinase-mediated cassette exchange reveal differential importance of the NPXY motifs in the intracellular domain of LRP1 for normal fetal development. Mol Cell Biol 2006, 26:605-616.
- [4]Gordts PL, Bartelt A, Nilsson SK, Annaert W, Christoffersen C, Nielsen LB, Heeren J, Roebroek AJ: Impaired LDL receptor-related protein 1 translocation correlates with improved dyslipidemia and atherosclerosis in apoE-deficient mice. PLoS One 2012, 7:e38330.
- [5]Betts GN, van der Geer P, Komives EA: Structural and functional consequences of tyrosine phosphorylation in the LRP1 cytoplasmic domain. J Biol Chem 2008, 283:15656-15664.
- [6]Guttman M, Betts GN, Barnes H, Ghassemian M, van der Geer P, Komives EA: Interactions of the NPXY microdomains of the low density lipoprotein receptor-related protein 1. Proteomics 2009, 9:5016-5028.
- [7]Zhuo M, Holtzman DM, Li Y, Osaka H, DeMaro J, Jacquin M, Bu G: Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J Neurosci 2000, 20:542-549.
- [8]Martin AM, Kuhlmann C, Trossbach S, Jaeger S, Waldron E, Roebroek A, Luhmann HJ, Laatsch A, Weggen S, Lessmann V, Pietrzik CU: The functional role of the second NPXY motif of the LRP1 beta-chain in tissue-type plasminogen activator-mediated activation of N-methyl-D-aspartate receptors. J Biol Chem 2008, 283:12004-12013.
- [9]Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S: Molecular cloning and characterization of the rat NMDA receptor. Nature 1991, 354:31-37.
- [10]Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, Yamazaki M, Kumanishi T, Arakawa M, Sakimura K, Mishina M: Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 1992, 357:70-74.
- [11]Wenthold RJ, Prybylowski K, Standley S, Sans N, Petralia RS: Trafficking of NMDA receptors. Annu Rev Pharmacol Toxicol 2003, 43:335-358.
- [12]Flint AC, Maisch US, Weishaupt JH, Kriegstein AR, Monyer H: NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J Neurosci 1997, 17:2469-2476.
- [13]Mierau SB, Meredith RM, Upton AL, Paulsen O: Dissociation of experience-dependent and -independent changes in excitatory synaptic transmission during development of barrel cortex. Proc Natl Acad Sci USA 2004, 101:15518-15523.
- [14]Quinlan EM, Philpot BD, Huganir RL, Bear MF: Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci 1999, 2:352-357.
- [15]Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY: Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 1994, 368:144-147.
- [16]Roberts EB, Ramoa AS: Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret. J Neurophysiol 1999, 81:2587-2591.
- [17]Liu XB, Murray KD, Jones EG: Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development. J Neurosci 2004, 24:8885-8895.
- [18]Yashiro K, Philpot BD: Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 2008, 55:1081-1094.
- [19]Chen BS, Roche KW: Regulation of NMDA receptors by phosphorylation. Neuropharmacology 2007, 53:362-368.
- [20]Chung HJ, Huang YH, Lau LF, Huganir RL: Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J Neurosci 2004, 24:10248-10259.
- [21]Sanz-Clemente A, Matta JA, Isaac JT, Roche KW: Casein kinase 2 regulates the NR2 subunit composition of synaptic NMDA receptors. Neuron 2010, 67:984-996.
- [22]Nakazawa T, Komai S, Tezuka T, Hisatsune C, Umemori H, Semba K, Mishina M, Manabe T, Yamamoto T: Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J Biol Chem 2001, 276:693-699.
- [23]Roche KW, Standley S, McCallum J, Dune Ly C, Ehlers MD, Wenthold RJ: Molecular determinants of NMDA receptor internalization. Nat Neurosci 2001, 4:794-802.
- [24]Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P: Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 2005, 8:1051-1058.
- [25]Lavezzari G, McCallum J, Lee R, Roche KW: Differential binding of the AP-2 adaptor complex and PSD-95 to the C-terminus of the NMDA receptor subunit NR2B regulates surface expression. Neuropharmacology 2003, 45:729-737.
- [26]May P, Rohlmann A, Bock HH, Zurhove K, Marth JD, Schomburg ED, Noebels JL, Beffert U, Sweatt JD, Weeber EJ, Herz J: Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Mol Cell Biol 2004, 24:8872-8883.
- [27]Liu Q, Trotter J, Zhang J, Peters MM, Cheng H, Bao J, Han X, Weeber EJ, Bu G: Neuronal LRP1 knockout in adult mice leads to impaired brain lipid metabolism and progressive, age-dependent synapse loss and neurodegeneration. J Neurosci 2010, 30:17068-17078.
- [28]Gordts PL, Reekmans S, Lauwers A, Van Dongen A, Verbeek L, Roebroek AJ: Inactivation of the LRP1 intracellular NPxYxxL motif in LDLR-deficient mice enhances postprandial dyslipidemia and atherosclerosis. Arterioscler Thromb Vasc Biol 2009, 29:1258-1264.
- [29]Deng Q, Terunuma M, Fellin T, Moss SJ, Haydon PG: Astrocytic activation of A1 receptors regulates the surface expression of NMDA receptors through a Src kinase dependent pathway. Glia 2011, 59:1084-1093.
- [30]Zhang XH, Wu LJ, Gong B, Ren M, Li BM, Zhuo M: Induction- and conditioning-protocol dependent involvement of NR2B-containing NMDA receptors in synaptic potentiation and contextual fear memory in the hippocampal CA1 region of rats. Mol Brain 2008, 1:9. BioMed Central Full Text
- [31]Lin EH, Hui AY, Meens JA, Tremblay EA, Schaefer E, Elliott BE: Disruption of Ca2 + -dependent cell-matrix adhesion enhances c-Src kinase activity, but causes dissociation of the c-Src/FAK complex and dephosphorylation of tyrosine-577 of FAK in carcinoma cells. Exp Cell Res 2004, 293:1-13.
- [32]Alexander RD, Morris PC: A proteomic analysis of 14-3-3 binding proteins from developing barley grains. Proteomics 2006, 6:1886-1896.
- [33]Tang TT, Yang F, Chen BS, Lu Y, Ji Y, Roche KW, Lu B: Dysbindin regulates hippocampal LTP by controlling NMDA receptor surface expression. Proc Natl Acad Sci USA 2009, 106:21395-21400.
- [34]Bannerman DM, Good MA, Butcher SP, Ramsay M, Morris RG: Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature 1995, 378:182-186.
- [35]Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, Kushiya E, Yagi T, Aizawa S, Inoue Y, Sugiyama H, et al.: Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 1995, 373:151-155.
- [36]Morris RG, Anderson E, Lynch GS, Baudry M: Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 1986, 319:774-776.
- [37]Dalton GL, Ma LM, Phillips AG, Floresco SB: Blockade of NMDA GluN2B receptors selectively impairs behavioral flexibility but not initial discrimination learning. Psychopharmacology (Berl) 2011, 216:525-535.
- [38]Perez-Otano I, Schulteis CT, Contractor A, Lipton SA, Trimmer JS, Sucher NJ, Heinemann SF: Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci 2001, 21:1228-1237.
- [39]Qiu S, Hua YL, Yang F, Chen YZ, Luo JH: Subunit assembly of N-methyl-d-aspartate receptors analyzed by fluorescence resonance energy transfer. J Biol Chem 2005, 280:24923-24930.
- [40]Pflanzner T, Janko MC, Andre-Dohmen B, Reuss S, Weggen S, Roebroek AJ, Kuhlmann CR, Pietrzik CU: LRP1 mediates bidirectional transcytosis of amyloid-beta across the blood–brain barrier. Neurobiol Aging 2011, 32(2323):e2321-2311.
- [41]Burns LH, Everitt BJ, Robbins TW: Intra-amygdala infusion of the N-methyl-D-aspartate receptor antagonist AP5 impairs acquisition but not performance of discriminated approach to an appetitive CS. Behav Neural Biol 1994, 61:242-250.
- [42]Liljequist S, Ossowska K, Grabowska-Anden M, Anden NE: Effect of the NMDA receptor antagonist, MK-801, on locomotor activity and on the metabolism of dopamine in various brain areas of mice. Eur J Pharmacol 1991, 195:55-61.
- [43]Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G, Tsien JZ: Genetic enhancement of learning and memory in mice. Nature 1999, 401:63-69.
- [44]Duffy S, Labrie V, Roder JC: D-serine augments NMDA-NR2B receptor-dependent hippocampal long-term depression and spatial reversal learning. Neuropsychopharmacology 2008, 33:1004-1018.
- [45]Brigman JL, Wright T, Talani G, Prasad-Mulcare S, Jinde S, Seabold GK, Mathur P, Davis MI, Bock R, Gustin RM, et al.: Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J Neurosci 2010, 30:4590-4600.
- [46]Cui Z, Feng R, Jacobs S, Duan Y, Wang H, Cao X, Tsien JZ: Increased NR2A:NR2B ratio compresses long-term depression range and constrains long-term memory. Sci Rep 2013, 3:1036.
- [47]Chen G, Li Q, Feng D, Hu T, Fang Q, Wang Z: Expression of NR2B in different brain regions and effect of NR2B antagonism on learning deficits after experimental subarachnoid hemorrhage. Neuroscience 2013, 231:136-144.
- [48]Zhang XH, Liu SS, Yi F, Zhuo M, Li BM: Delay-dependent impairment of spatial working memory with inhibition of NR2B-containing NMDA receptors in hippocampal CA1 region of rats. Mol Brain 2013, 6:13. BioMed Central Full Text
- [49]Fontan-Lozano A, Suarez-Pereira I, Gonzalez-Forero D, Carrion AM: The A-current modulates learning via NMDA receptors containing the NR2B subunit. PLoS One 2011, 6:e24915.
- [50]Pietrzik CU, Busse T, Merriam DE, Weggen S, Koo EH: The cytoplasmic domain of the LDL receptor-related protein regulates multiple steps in APP processing. EMBO J 2002, 21:5691-5700.
- [51]Schmitt U, Hiemke C: Combination of open field and elevated plus-maze: a suitable test battery to assess strain as well as treatment differences in rat behavior. Prog Neuropsychopharmacol Biol Psychiatry 1998, 22:1197-1215.
- [52]Schmitt U, Hiemke C, Fahrenholz F, Schroeder A: Over-expression of two different forms of the alpha-secretase ADAM10 affects learning and memory in mice. Behav Brain Res 2006, 175:278-284.
- [53]Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K, Hiemke C, Blessing M, et al.: A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 2004, 113:1456-1464.
PDF