期刊论文详细信息
Retrovirology
Key determinants of target DNA recognition by retroviral intasomes
Alan N Engelman3  Goedele N Maertens1  Peter Cherepanov2  Allison Ballandras-Colas3  Erik Serrao3 
[1] Division of Infectious Diseases, Imperial College London, London, UK;Clare Hall Laboratories, The Francis Crick Institute, London, UK;Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, USA
关键词: BET proteins;    Nucleosomes;    Integration sites;    Dinucleotide steps;    DNA flexibility;    Integrase;    Retrovirus;   
Others  :  1210151
DOI  :  10.1186/s12977-015-0167-3
 received in 2015-01-01, accepted in 2015-04-20,  发布年份 2015
PDF
【 摘 要 】

Background

Retroviral integration favors weakly conserved palindrome sequences at the sites of viral DNA joining and generates a short (4–6 bp) duplication of host DNA flanking the provirus. We previously determined two key parameters that underlie the target DNA preference for prototype foamy virus (PFV) and human immunodeficiency virus type 1 (HIV-1) integration: flexible pyrimidine (Y)/purine (R) dinucleotide steps at the centers of the integration sites, and base contacts with specific integrase residues, such as Ala188 in PFV integrase and Ser119 in HIV-1 integrase. Here we examined the dinucleotide preference profiles of a range of retroviruses and correlated these findings with respect to length of target site duplication (TSD).

Results

Integration datasets covering six viral genera and the three lengths of TSD were accessed from the literature or generated in this work. All viruses exhibited significant enrichments of flexible YR and/or selection against rigid RY dinucleotide steps at the centers of integration sites, and the magnitude of this enrichment inversely correlated with TSD length. The DNA sequence environments of in vivo-generated HIV-1 and PFV sites were consistent with integration into nucleosomes, however, the local sequence preferences were largely independent of target DNA chromatinization. Integration sites derived from cells infected with the gammaretrovirus reticuloendotheliosis virus strain A (Rev-A), which yields a 5 bp TSD, revealed the targeting of global chromatin features most similar to those of Moloney murine leukemia virus, which yields a 4 bp duplication. In vitro assays revealed that Rev-A integrase interacts with and is catalytically stimulated by cellular bromodomain containing 4 protein.

Conclusions

Retroviral integrases have likely evolved to bend target DNA to fit scissile phosphodiester bonds into two active sites for integration, and viruses that cut target DNA with a 6 bp stagger may not need to bend DNA as sharply as viruses that cleave with 4 bp or 5 bp staggers. For PFV and HIV-1, the selection of signature bases and central flexibility at sites of integration is largely independent of chromatin structure. Furthermore, global Rev-A integration is likely directed to chromatin features by bromodomain and extraterminal domain proteins.

【 授权许可】

   
2015 Serrao et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150602145808958.pdf 2571KB PDF download
Figure 7. 48KB Image download
Figure 6. 29KB Image download
Figure 5. 97KB Image download
Figure 4. 72KB Image download
Figure 3. 102KB Image download
Figure 2. 115KB Image download
Figure 1. 110KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Li M, Mizuuchi M, Burke TR, Craigie R. Retroviral DNA integration: reaction pathway and critical intermediates. EMBO J. 2006; 25:1295-304.
  • [2]Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature. 2010; 464:232-6.
  • [3]Hare S, Maertens GN, Cherepanov P. 3′-processing and strand transfer catalysed by retroviral integrase in crystallo. EMBO J. 2012; 31:3020-8.
  • [4]Fujiwara T, Mizuuchi K. Retroviral DNA integration: structure of an integration intermediate. Cell. 1988; 54:497-504.
  • [5]Roth MJ, Schwartzberg PL, Goff SP. Structure of the termini of DNA intermediates in the integration of retroviral DNA: dependence on IN function and terminal DNA sequence. Cell. 1989; 58:47-54.
  • [6]Brown PO, Bowerman B, Varmus HE, Bishop JM. Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein. Proc Natl Acad Sci U S A. 1989; 86:2525-9.
  • [7]Pauza CD. Two bases are deleted from the termini of HIV-1 linear DNA during integrative recombination. Virology. 1990; 179:886-9.
  • [8]Lee YM, Coffin JM. Relationship of avian retrovirus DNA synthesis to integration in vitro. Mol Cell Biol. 1991; 11:1419-30.
  • [9]Bowerman B, Brown PO, Bishop JM, Varmus HE. A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev. 1989; 3:469-78.
  • [10]Bukrinsky MI, Sharova N, Dempsey MP, Stanwick TL, Bukrinskaya AG, Haggerty S et al.. Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci U S A. 1992; 89:6580-4.
  • [11]Miller MD, Farnet CM, Bushman FD. Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J Virol. 1997; 71:5382-90.
  • [12]Maertens GN, Hare S, Cherepanov P. The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature. 2010; 468:326-9.
  • [13]Engelman A, Mizuuchi K, Craigie R. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell. 1991; 67:1211-21.
  • [14]Holman AG, Coffin JM. Symmetrical base preferences surrounding HIV-1, avian sarcoma/leukosis virus, and murine leukemia virus integration sites. Proc Natl Acad Sci U S A. 2005; 102:6103-7.
  • [15]Wu X, Li Y, Crise B, Burgess SM, Munroe DJ. Weak palindromic consensus sequences are a common feature found at the integration target sites of many retroviruses. J Virol. 2005; 79:5211-4.
  • [16]Berry C, Hannenhalli S, Leipzig J, Bushman FD. Selection of target sites for mobile DNA integration in the human genome. PLoS Comput Biol. 2006; 2: Article ID e157
  • [17]Derse D, Crise B, Li Y, Princler G, Lum N, Stewart C et al.. Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses. J Virol. 2007; 81:6731-41.
  • [18]Kvaratskhelia M, Sharma A, Larue RC, Serrao E, Engelman A. Molecular mechanisms of retroviral integration site selection. Nucleic Acids Res. 2014; 42:10209-25.
  • [19]Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell. 2002; 110:521-9.
  • [20]Wu X, Li Y, Crise B, Burgess SM. Transcription start regions in the human genome are favored targets for MLV integration. Science. 2003; 300:1749-51.
  • [21]De Ravin SS, Su L, Theobald N, Choi U, Macpherson JL, Poidinger M et al.. Enhancers are major targets for murine leukemia virus vector integration. J Virol. 2014; 88:4504-13.
  • [22]LaFave MC, Varshney GK, Gildea DE, Wolfsberg TG, Baxevanis AD, Burgess SM. MLV integration site selection is driven by strong enhancers and active promoters. Nucleic Acids Res. 2014; 42:4257-69.
  • [23]Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P et al.. A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med. 2005; 11:1287-9.
  • [24]Marshall HM, Ronen K, Berry C, Llano M, Sutherland H, Saenz D et al.. Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting. PLoS One. 2007; 2: Article ID e1340
  • [25]Shun MC, Raghavendra NK, Vandegraaff N, Daigle JE, Hughes S, Kellam P et al.. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev. 2007; 21:1767-78.
  • [26]Schrijvers R, De Rijck J, Demeulemeester J, Adachi N, Vets S, Ronen K et al.. LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs. PLoS Pathog. 2012; 8: Article ID e1002558
  • [27]Sharma A, Larue RC, Plumb MR, Malani N, Male F, Slaughter A et al.. BET proteins promote efficient murine leukemia virus integration at transcription start sites. Proc Natl Acad Sci U S A. 2013; 110:12036-41.
  • [28]Gupta SS, Maetzig T, Maertens GN, Sharif A, Rothe M, Weidner-Glunde M et al.. Bromo- and extraterminal domain chromatin regulators serve as cofactors for murine leukemia virus integration. J Virol. 2013; 87:12721-36.
  • [29]De Rijck J, de Kogel C, Demeulemeester J, Vets S, El Ashkar S, Malani N et al.. The BET family of proteins targets moloney murine leukemia virus integration near transcription start sites. Cell Rep. 2013; 5:886-94.
  • [30]Faschinger A, Rouault F, Sollner J, Lukas A, Salmons B, Gunzburg WH et al.. Mouse mammary tumor virus integration site selection in human and mouse genomes. J Virol. 2008; 82:1360-7.
  • [31]Stevens SW, Griffith JD. Sequence analysis of the human DNA flanking sites of human immunodeficiency virus type 1 integration. J Virol. 1996; 70:6459-62.
  • [32]Johnson RC, Stella S, Heiss JK. Bending and compaction of DNA by Proteins. In: Protein-nucleic acid interactions. Rice PA, Correll CC, editors. RCS Publishing, London; 2008: p.176-220.
  • [33]Serrao E, Krishnan L, Shun MC, Li X, Cherepanov P, Engelman A et al.. Integrase residues that determine nucleotide preferences at sites of HIV-1 integration: implications for the mechanism of target DNA binding. Nucleic Acids Res. 2014; 42:5164-76.
  • [34]Muller HP, Varmus HE. DNA bending creates favored sites for retroviral integration: an explanation for preferred insertion sites in nucleosomes. EMBO J. 1994; 13:4704-14.
  • [35]Pruss D, Reeves R, Bushman FD, Wolffe AP. The influence of DNA and nucleosome structure on integration events directed by HIV integrase. J Biol Chem. 1994; 269:25031-41.
  • [36]Katz RA, Gravuer K, Skalka AM. A preferred target DNA structure for retroviral integrase in vitro. J Biol Chem. 1998; 273:24190-5.
  • [37]Pryciak PM, Varmus HE. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell. 1992; 69:769-80.
  • [38]Pruss D, Bushman FD, Wolffe AP. Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc Natl Acad Sci U S A. 1994; 91:5913-7.
  • [39]Maskell DP, Renault L, Serrao E, Lesbats P, Matadeen R, Hare S, et al. Structural basis for retroviral integration into nucleosomes. Nature. 2015, in press.
  • [40]Bor YC, Bushman FD, Orgel LE. In vitro integration of human immunodeficiency virus type 1 cDNA into targets containing protein-induced bends. Proc Natl Acad Sci U S A. 1995; 92:10334-8.
  • [41]Pryciak PM, Müller HP, Varmus HE. Simian virus 40 minichromosomes as targets for retroviral integration in vivo. Proc Natl Acad Sci U S A. 1992; 89:9237-41.
  • [42]Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res. 2007; 17:1186-94.
  • [43]Wang GP, Levine BL, Binder GK, Berry CC, Malani N, McGarrity G et al.. Analysis of lentiviral vector integration in HIV+ study subjects receiving autologous infusions of gene modified CD4+ T cells. Mol Ther. 2009; 17:844-50.
  • [44]Roth SL, Malani N, Bushman FD. Gammaretroviral integration into nucleosomal target DNA in vivo. J Virol. 2011; 85:7393-401.
  • [45]Benleulmi MS, Matysiak J, Henriquez DR, Vaillant C, Lesbats P, Calmels C et al.. Intasome architecture and chromatin density modulate retroviral integration into nucleosome. Retrovirology. 2015; 12:13.
  • [46]Valkov E, Gupta SS, Hare S, Helander A, Roversi P, McClure M et al.. Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Res. 2009; 37:243-55.
  • [47]Schweizer M, Fleps U, Jäckle A, Renne R, Turek R, Neumann-Haefelin D. Simian foamy virus type 3 (SFV-3) in latently infected Vero cells: reactivation by demethylation of proviral DNA. Virology. 1993; 192:663-6.
  • [48]Neves M, Périès J, Saïb A. Study of human foamy virus proviral integration in chronically infected murine cells. Res Virol. 1998; 149:393-401.
  • [49]Dhar R, McClements WL, Enquist LW, Vande Woude GF. Nucleotide sequences of integrated Moloney sarcoma provirus long terminal repeats and their host and viral junctions. Proc Natl Acad Sci U S A. 1980; 77:3937-41.
  • [50]Shoemaker C, Goff S, Gilboa E, Paskind M, Mitra SW, Baltimore D. Structure of a cloned circular Moloney murine leukemia virus DNA molecule containing an inverted segment: implications for retrovirus integration. Proc Natl Acad Sci U S A. 1980; 77:3932-6.
  • [51]Niebert M, Rogel-Gaillard C, Chardon P, Tönjes RR. Characterization of chromosomally assigned replication-competent gamma porcine endogenous retroviruses derived from a large white pig and expression in human cells. J Virol. 2002; 76:2714-20.
  • [52]Gorbovitskaia M, Liu Z, Bourgeaux N, Li N, Lian Z, Chardon P et al.. Characterization of two porcine endogenous retrovirus integration loci and variability in pigs. Immunogenetics. 2003; 55:262-70.
  • [53]Kim S, Kim N, Dong B, Boren D, Lee SA, Das Gupta J et al.. Integration site preference of xenotropic murine leukemia virus-related virus, a new human retrovirus associated with prostate cancer. J Virol. 2008; 82:9964-77.
  • [54]Kim S, Rusmevichientong A, Dong B, Remenyi R, Silverman RH, Chow SA. Fidelity of target site duplication and sequence preference during integration of xenotropic murine leukemia virus-related virus. PLoS One. 2010; 5: Article ID e10255
  • [55]Hishinuma F, DeBona PJ, Astrin S, Skalka AM. Nucleotide sequence of acceptor site and termini of integrated avian endogenous provirus ev1: integration creates a 6 bp repeat of host DNA. Cell. 1981; 23:155-64.
  • [56]Hughes SH, Mutschler A, Bishop JM, Varmus HE. A Rous sarcoma virus provirus is flanked by short direct repeats of a cellular DNA sequence present in only one copy prior to integration. Proc Natl Acad Sci U S A. 1981; 78:4299-5303.
  • [57]Chou KS, Okayama A, Tachibana N, Lee TH, Essex M. Nucleotide sequence analysis of a full-length human T-cell leukemia virus type I from adult T-cell leukemia cells: a prematurely terminated PX open reading frame II. Int J Cancer. 1995; 60:701-6.
  • [58]Chou KS, Okayama A, Su IJ, Lee TH, Essex M. Preferred nucleotide sequence at the integration target site of human T-cell leukemia virus type I from patients with adult T-cell leukemia. Int J Cancer. 1996; 65:20-4.
  • [59]Ono M. Molecular cloning and long terminal repeat sequences of human endogenous retrovirus genes related to types A and B retrovirus genes. J Virol. 1986; 58:937-44.
  • [60]Majors JE, Varmus HE. Nucleotide sequences at host-proviral junctions for mouse mammary tumour virus. Nature. 1981; 289:253-8.
  • [61]Vincent KA, York-Higgins D, Quiroga M, Brown PO. Host sequences flanking the HIV provirus. Nucleic Acids Res. 1990; 18:6045-7.
  • [62]Vink C, Groenink M, Elgersma Y, Fouchier RA, Tersmette M, Plasterk RH. Analysis of the junctions between human immunodeficiency virus type 1 proviral DNA and human DNA. J Virol. 1990; 64:5626-7.
  • [63]Regier DA, Desrosiers RC. The complete nucleotide sequence of a pathogenic molecular clone of simian immunodeficiency virus. AIDS Res Hum Retroviruses. 1990; 6:1221-31.
  • [64]Hacker CV, Vink CA, Wardell TW, Lee S, Treasure P, Kingsman SM et al.. The integration profile of EIAV-based vectors. Mol Ther. 2006; 14:536-45.
  • [65]Shimotohno K, Temin HM. No apparent nucleotide sequence specificity in cellular DNA juxtaposed to retrovirus proviruses. Proc Natl Acad Sci U S A. 1980; 77:7357-61.
  • [66]Ballandras-Colas A, Naraharisetty H, Li X, Serrao E, Engelman A. Biochemical characterization of novel retroviral integrase proteins. PLoS One. 2013; 8: Article ID e76638
  • [67]Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004; 14:1188-90.
  • [68]Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, Moore IK et al.. A genomic code for nucleosome positioning. Nature. 2006; 442:772-8.
  • [69]Aiyer S, Swapna GV, Malani N, Aramini JM, Schneider WM, Plumb MR et al.. Altering murine leukemia virus integration through disruption of the integrase and BET protein family interaction. Nucleic Acids Res. 2014; 42:5917-28.
  • [70]Larue RC, Plumb MR, Crowe BL, Shkriabai N, Sharma A, DiFiore J et al.. Bimodal high-affinity association of Brd4 with murine leukemia virus integrase and mononucleosomes. Nucleic Acids Res. 2014; 42:4868-81.
  • [71]Suzuki M, Yagi N. Stereochemical basis of DNA bending by transcription factors. Nucleic Acids Res. 1995; 23:2083-91.
  • [72]el Hassan MA, Calladine CR. Propeller-twisting of base-pairs and the conformational mobility of dinucleotide steps in DNA. J Mol Biol. 1996; 259:95-103.
  • [73]Packer MJ, Dauncey MP, Hunter CA. Sequence-dependent DNA structure: dinucleotide conformational maps. J Mol Biol. 2000; 295:71-83.
  • [74]Olson WK, Gorin AA, Lu XJ, Hock LM, Zhurkin VB. DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc Natl Acad Sci U S A. 1998; 95:11163-8.
  • [75]Aymami J, Coll M, van der Marel GA, van Boom JH, Wang AH, Rich A. Molecular structure of nicked DNA: a substrate for DNA repair enzymes. Proc Natl Acad Sci U S A. 1990; 87:2526-30.
  • [76]Zhang Y, Crothers DM. High-throughput approach for detection of DNA bending and flexibility based on cyclization. Proc Natl Acad Sci U S A. 2003; 100:3161-6.
  • [77]Protozanova E, Yakovchuk P, Frank-Kamenetskii MD. Stacked-unstacked equilibrium at the nick site of DNA. J Mol Biol. 2004; 342:775-85.
  • [78]Mills JB, Hagerman PJ. Origin of the intrinsic rigidity of DNA. Nucleic Acids Res. 2004; 32:4055-9.
  • [79]Richmond TJ, Davey CA. The structure of DNA in the nucleosome core. Nature. 2003; 423:145-50.
  • [80]Brukner I, Sánchez R, Suck D, Pongor S. Sequence-dependent bending propensity of DNA as revealed by DNase I: parameters for trinucleotides. EMBO J. 1995; 14:1812-8.
  • [81]Taganov KD, Cuesta I, Daniel R, Cirillo LA, Katz RA, Zaret KS et al.. Integrase-specific enhancement and suppression of retroviral DNA integration by compacted chromatin structure in vitro. J Virol. 2004; 78:5848-55.
  • [82]Lesbats P, Botbol Y, Chevereau G, Vaillant C, Calmels C, Arneodo A et al.. Functional coupling between HIV-1 integrase and the SWI/SNF chromatin remodeling complex for efficient in vitro integration into stable nucleosomes. PLoS Pathog. 2011; 7: Article ID e1001280
  • [83]Demeulemeester J, Vets S, Schrijvers R, Madlala P, De Maeyer M, De Rijck J et al.. HIV-1 integrase variants retarget viral integration and are associated with disease progression in a chronic infection cohort. Cell Host Microbe. 2014; 16:651-62.
  • [84]Cherepanov P. LEDGF/p75 interacts with divergent lentiviral integrases and modulates their enzymatic activity in vitro. Nucleic Acids Res. 2007; 35:113-24.
  • [85]Dougherty JP, Temin HM. High mutation rate of a spleen necrosis virus-based retrovirus vector. Mol Cell Biol. 1986; 6:4387-95.
  • [86]Watanabe S, Temin HM. Construction of a helper cell line for avian reticuloendotheliosis virus cloning vectors. Mol Cell Biol. 1983; 3:2241-9.
  • [87]Matreyek KA, Wang W, Serrao E, Singh P, Levin HL, Engelman A. Host and viral determinants for MxB restriction of HIV-1 infection. Retrovirology. 2014; 11:90.
  • [88]R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2011.
  • [89]Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science. 1994; 266:1981-6.
  • [90]Bujacz G, Jaskolski M, Alexandratos J, Wlodawer A, Merkel G, Katz RA et al.. High-resolution structure of the catalytic domain of avian sarcoma virus integrase. J Mol Biol. 1995; 253:333-46.
  • [91]Chen Z, Yan Y, Munshi S, Li Y, Zugay-Murphy J, Xu B et al.. X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50–293) - an initial glance of the viral DNA binding platform. J Mol Biol. 2000; 296:521-33.
  • [92]Trobridge GD, Miller DG, Jacobs MA, Allen JM, Kiem HP, Kaul R et al.. Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci U S A. 2006; 103:1498-503.
  • [93]Nowrouzi A, Dittrich M, Klanke C, Heinkelein M, Rammling M, Dandekar T et al.. Genome-wide mapping of foamy virus vector integrations into a human cell line. J Gen Virol. 2006; 87:1339-47.
  • [94]Moalic Y, Felix H, Takeuchi Y, Jestin A, Blanchard Y. Genome areas with high gene density and CpG island neighborhood strongly attract porcine endogenous retrovirus for integration and favor the formation of hot spots. J Virol. 2009; 83:1920-9.
  • [95]Hematti P, Hong BK, Ferguson C, Adler R, Hanawa H, Sellers S et al.. Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol. 2004; 2: Article ID e423
  • [96]Crise B, Li Y, Yuan C, Morcock DR, Whitby D, Munroe DJ et al.. Simian immunodeficiency virus integration preference is similar to that of human immunodeficiency virus type 1. J Virol. 2005; 79:12199-204.
  • [97]Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC et al.. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2004; 2: Article ID E234
  • [98]Narezkina A, Taganov KD, Litwin S, Stoyanova R, Hayashi J, Seeger C et al.. Genome-wide analyses of avian sarcoma virus integration sites. J Virol. 2004; 78:11656-63.
  • [99]Barr SD, Leipzig J, Shinn P, Ecker JR, Bushman FD. Integration targeting by avian sarcoma-leukosis virus and human immunodeficiency virus in the chicken genome. J Virol. 2005; 79:12035-44.
  • [100]Brady T, Lee YN, Ronen K, Malani N, Berry CC, Bieniasz PD et al.. Integration target site selection by a resurrected human endogenous retrovirus. Genes Dev. 2009; 23:633-42.
  • [101]Meekings KN, Leipzig J, Bushman FD, Taylor GP, Bangham CR. HTLV-1 integration into transcriptionally active genomic regions is associated with proviral expression and with HAM/TSP. PLoS Pathog. 2008; 4: Article ID e1000027
  • [102]Gillet NA, Malani N, Melamed A, Gormley N, Carter R, Bentley D et al.. The host genomic environment of the provirus determines the abundance of HTLV-1-infected T-cell clones. Blood. 2011; 117:3113-22.
  • [103]de Jong J, Akhtar W, Badhai J, Rust AG, Rad R, Hilkens J et al.. Chromatin landscapes of retroviral and transposon integration profiles. PLoS Genet. 2014; 10: Article ID e1004250
  文献评价指标  
  下载次数:28次 浏览次数:11次