期刊论文详细信息
Neural Development
Proliferation zones in the axolotl brain and regeneration of the telencephalon
Brandi K Ormerod2  Laurie A Manwell3  Malcolm Maden1 
[1] Department of Biology & UF Genetics Institute, University of Florida, PO Box 118525, Gainesville, FL, 32611, USA;J. Crayton Pruitt Family Department of Biomedical Engineering, Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, USA;Department of Psychology, Sir Wilfrid Laurier University, Waterloo, ON, Canada
关键词: Ventricular zone;    Telencephalon;    Neural precursor cells;    NeuN;    GFAP;    DCX;    Brain regeneration;    Axolotl;   
Others  :  806640
DOI  :  10.1186/1749-8104-8-1
 received in 2012-10-02, accepted in 2012-12-14,  发布年份 2013
PDF
【 摘 要 】

Background

Although the brains of lower vertebrates are known to exhibit somewhat limited regeneration after incisional or stab wounds, the Urodele brain exhibits extensive regeneration after massive tissue removal. Discovering whether and how neural progenitor cells that reside in the ventricular zones of Urodeles proliferate to mediate tissue repair in response to injury may produce novel leads for regenerative strategies. Here we show that endogenous neural progenitor cells resident to the ventricular zone of Urodeles spontaneously proliferate, producing progeny that migrate throughout the telencephalon before terminally differentiating into neurons. These progenitor cells appear to be responsible for telencephalon regeneration after tissue removal and their activity may be up-regulated by injury through an olfactory cue.

Results

There is extensive proliferation of endogenous neural progenitor cells throughout the ventricular zone of the adult axolotl brain. The highest levels are observed in the telencephalon, especially the dorsolateral aspect, and cerebellum. Lower levels are observed in the mesencephalon and rhombencephalon. New cells produced in the ventricular zone migrate laterally, dorsally and ventrally into the surrounding neuronal layer. After migrating from the ventricular zone, the new cells primarily express markers of neuronal differentiative fates. Large-scale telencephalic tissue removal stimulates progenitor cell proliferation in the ventricular zone of the damaged region, followed by proliferation in the tissue that surrounds the healing edges of the wound until the telencephalon has completed regeneration. The proliferative stimulus appears to reside in the olfactory system, because telencephalic regeneration does not occur in the brains of olfactory bulbectomized animals in which the damaged neural tissue simply heals over.

Conclusion

There is a continual generation of neuronal cells from neural progenitor cells located within the ventricular zone of the axolotl brain. Variable rates of proliferation were detected across brain regions. These neural progenitor cells appear to mediate telencephalic tissue regeneration through an injury-induced olfactory cue. Identification of this cue is our future goal.

【 授权许可】

   
2013 Maden et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708094726857.pdf 4244KB PDF download
Figure 6. 182KB Image download
Figure 5. 133KB Image download
Figure 4. 269KB Image download
Figure 3. 326KB Image download
Figure 2. 190KB Image download
Figure 1. 199KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Palmer TD, Markakis EA, Willhoite AR, Safar F, Gage FH: Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci 1999, 18:8487-8497.
  • [2]Horner PJ, Power AE, Kempermann G, Kuhn HG, Palmer TD, Winkler J, Thal LJ, Gage FH: Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 2000, 20:2218-2228.
  • [3]Doetsch F, García-Verdugo JM, Alvarez-Buylla A: Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 1997, 17:5046-5061.
  • [4]Zhou C, Deng W, Gage FH: Mechanisms and functional implications of adult neurogenesis. Cell 2008, 132:645-660.
  • [5]Palmer TD, Ray J, Gage FH: FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol Cell Neurosci 1995, 6:474-486.
  • [6]Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH: Cell culture. Progenitor cells from human brain after death. Nature 2001, 411:42-43.
  • [7]Arsenijevic Y, Villemure JG, Brunet JF, Bloch JJ, Déglon N, Kostic C, Zurn A, Aebischer P: Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol 2001, 170:48-62.
  • [8]Laywell ED, Kukekov VG, Suslov O, Zheng T, Steindler DA: Production and analysis of neurospheres from acutely dissociated and postmortem CNS specimens. Methods Mol Biol 2002, 198:15-27.
  • [9]Kirsche W: The significance of matrix zones for brain regeneration and brain transplantation with special consideration of lower vertebrates. In Neural Tissue Transplantation Research. Edited by Wallace R, Das GD. New York: Springer; 1983:65-104.
  • [10]Chapouton P, Jagasia R, Bally-Cuif L: Adult neurogenesis in non-mammalian vertebrates. Bioessays 2007, 29:745-757.
  • [11]Ferretti P: Is there a relationship between adult neurogenesis and neuron generation following injury across evolution? Eur J Neurosci 2011, 34:951-962.
  • [12]Kizil C, Kaslin J, Kroehne V, Brand M: Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol 2012, 72:429-461.
  • [13]Zupanc GHK: Adult neurogenesis and neural regeneration in the brain of teleost fish. J Physiol Paris 2008, 102:357-373.
  • [14]Zupanc GHK, Hinsch K, Gage FH: Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. J Comp Neurol 2005, 488:290-319.
  • [15]Grandel H, Kaslin J, Ganz J, Wenzel I, Brand M: Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev Biol 2006, 295:263-277.
  • [16]Adolf B, Chapouton P, Lam CS, Topp S, Tannhauser B, Strahle U, Gotz M, Bally-Cuif L: Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Dev Biol 2006, 295:278-293.
  • [17]Rothenaigner I, Krecsmarik M, Hayes JA, Bahn B, Lepier A, Fortin G, Gotz M, Jagasia R, Bally-Cuif L: Clonal analysis by distinct viral vectors identifies bona fide neural stem cells in the adult zebrafish telencephalon and characterizes their division properties and fate. Development 2011, 138:1459-1468.
  • [18]März M, Chapouton P, Diotel N, Vaillant C, Hesl B, Takamiya M, Lam CS, Kah O, Bally-Cuif L, Strähle U: Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon. Glia 2010, 58:870-888.
  • [19]Ganz J, Kaslin J, Hochmann S, Freudenreich D, Brand M: Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon. Glia 2010, 15:1345-1363.
  • [20]Kishimoto N, Alfaro-Cervello C, Shimizu K, Asakawa K, Urasaki A, Nonaka S, Kawakami K, Garcia-Verdugo JM, Sawamoto K: Migration of neuronal precursors from the telencephalic ventricular zone into the olfactory bulb in adult zebrafish. J Comp Neurol 2011, 519:3549-3565.
  • [21]Kaslin J, Ganz J, Brand M: Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Phil Trans R Soc B 2008, 363:101-122.
  • [22]Ayari B, El Hachimi KH, Yanicostas C, Landoulsi A, Soussi-Yanicostas N: Prokineticin 2 expression is associated with neural repair of injured adult zebrafish telencephalon. J Neurotrauma 2010, 2010(27):959-972.
  • [23]Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M: Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 2011, 138:4831-4841.
  • [24]Kishimoto N, Shimizu K, Sawamoto K: Neuronal regeneration in a zebrafish model of adult brain injury. Dis Model Mech 2012, 5:200-209.
  • [25]März M, Schmidt R, Rastegar S, Strähle U: Regenerative response following stab injury in the adult zebrafish telencephalon. Dev Dyn 2011, 240:2221-2231.
  • [26]Font E, Desfilis E, Perez-Canellas MM, Garcia-Verdugo JM: Neurogenesis and neuronal regeneration in the adult reptilian brain. Brain Behav Evol 2001, 58:276-295.
  • [27]Garcia-Verdugo JM, Ferron S, Flames N, Collado L, Desfilis E, Font E: The proliferative ventricular zone in adult vertebrates: a comparative study using reptiles, birds and mammals. Brain Res Bull 2002, 57:765-775.
  • [28]Romero-Aleman MM, Monzon-Mayor M, Yanes C, Lang D: Radial glial cells, proliferating periventricular cells, and microglia might contribute to successful structural repair in the cerebral cortex of the lizardGalloia galloti. Exp Neurol 2004, 188:74-85.
  • [29]Minelli G, del Grande P, Mambelli MC: Preliminary study of the regenerative process of the dorsal cortex of the telencephalon ofLacerta viridis. Z Mikrosk Anat Forsch 1977, 91:241-256.
  • [30]Richter W, Kranz D: Autoradiographic investigations on postnatal proliferative activity of the telencephalic and diencephalic matrix-zones in the axolotl (Ambystoma mexicanum), with special reference to the olfactory organ. Z Mikrosk Anat Forsch 1981, 95:883-904.
  • [31]Parish CL, Beljajeva A, Arenas E, Simon A: Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induce regeneration model. Development 2007, 134:2881-2887.
  • [32]Berg DA, Kirkham M, Beljajeva A, Knapp D, Habermann B, Ryge J, Tanaka EM, Simon A: Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain. Development 2010, 137:4127-4134.
  • [33]Okamoto M, Ohsawa H, Hayashi T, Owaribe K, Tsonis PA: Regeneration of retinotectal projections after optic tectum removal in adult newts. Mol Vis 2007, 13:2112-2118.
  • [34]Kirsche K, Kirsche W: Experimentelle Untersuchung uber den Eniflu β der Regeneration des Nervus olfactorius auf die Vorderhirnregeneration von Ambystoma mexicanum. J Hirnforsch 1964, 7:315-333.
  • [35]Kirsche K, Kirsche W: Kompensatorische Hyperplasie und Regeneration im Endhirn von Ambystoma mexicanum nach Resektion einer Hemisphare. Z Mikrosk Anat Forsch 1964, 71:505-521.
  • [36]Kirsche K, Kirsche W: Uber homotransplantation eines Endhirndrittels von Ambystoma mexicanum. Z Mikrosk Anat Forsch 1968, 79:223-243.
  • [37]Winkelmann E, Winkelmann A: Experimentelle Untersuchungen zur Regeneration des Telencephalon von Ambystoma mexicanum nach Resektion beider Hemispharen. Z Mikrosk Anat Forsch 1970, 82:149-171.
  • [38]Richter W: Regenerative Vorgange nach einseitiger Enfernung des caudalen Endhirnabschnittes einschlie lich des telo-diencephalen Grenzbereiches bei Ambystoma mexicanum. J Hirnforsch 1968, 10:515-534.
  • [39]Calof AL, Mumm JS, Rim PC, Shou J: The neuronal stem cells of the olfactory epithelium. J Neurobiol 1998, 36:190-205.
  • [40]Li Y, Field PM, Raisman G: Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells. J Neurosci 1998, 18:10514-10524.
  • [41]Miller RH, Liuzzi FL: Regional specialization of the radial glial cells of the adult frog spinal cord. J Neurocytol 1988, 15:187-196.
  • [42]Zamora AJ, Mutin M: Vimentin and glial fibrillary acidic protein filaments in radial glia of the adult urodele spinal cord. Neurosci 1988, 27:279-288.
  • [43]Naujoks-Manteuffel C, Roth G: Astroglial cells in a salamander brain (Salamandra salamandra) as compared to mammals: a glial fibrillary acidic protein immunohistochemical study. Brain Res 1989, 487:397-410.
  • [44]Holder N, Clarke JD, Kamalati T, Lane EB: Heterogeneity in spinal radial glia demonstrated by intermediate filament expression and HRP labelling. J Neurocytol 1990, 19:915-928.
  • [45]Lazzari M, Franceschini V, Ciani F: Glial fibrillary acidic protein and vimentin in radial glia ofAmbystoma mexicanumandTirturus carnifex: an immunocytochemical study. J Hirnforsch 1997, 38:187-194.
  • [46]Tomizawa K, Inoue Y, Nakayasu H: A monoclonal antibody stains radial glia in the adult zebrafish (Danio rerio) CNS. J Neurocytol 2000, 29:119-128.
  • [47]Speisman RB, Kumar A, Rani A, Foster TC, Ormerod BK: Daily exercise improves memory, stimulates hippocampal neurogenesis and modulates immune and neuroimmune cytokines in aging rats. Brain Behav Immun 2012. [Epub ahead of print]
  • [48]Goss RJ: Principles of Regeneration. New York: Academic Press; 1969.
  • [49]Ormerod BK, Palmer TD, Caldwell MA: Neurodegeneration and cell replacement. Philos Trans R Soc Lond B Biol Sci 2008, 363:153-170.
  • [50]Goldman SA, Nottebohm F: Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA 1983, 80:2390-2394.
  • [51]Schwob JE: Neural regeneration and the peripheral olfactory system. Anat Rec 2002, 269:33-49.
  • [52]Brandt MD, Maass A, Kempermann G, Storch A: Physical exercise increases Notch activity, proliferation and cell cycle exit of type-3 progenitor cells in adult hippocampal neurogenesis. Eur J Neurosci 2010, 32:1256-1264.
  • [53]Brown JP, Coullard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG: Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 2003, 467:1-10.
  • [54]Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH: Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 2003, 130:391-399.
  • [55]Cameron HA, Wooley CS, McEwen BS, Gould E: Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 1993, 56:337-344.
  • [56]Nishiyama A, Cahng A, Trapp BD: NG2+ glial cells: a novel glial cell population in the adult brain. J Neuropathol Exp Neurol 1999, 58:1113-1124.
  • [57]Bignami A, Eng LF, Dahl D, Uyeda CF: Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res 1972, 43:428-435.
  文献评价指标  
  下载次数:47次 浏览次数:19次