期刊论文详细信息
Retrovirology
Single mutations in the transmembrane envelope protein abrogate the immunosuppressive property of HIV-1
Joachim Denner2  Marwan Semaan2  Alexey V Morozov1  Vladimir A Morozov2 
[1] Present address: W.A. Engelhardt Institute of Molecular Biology, Vavilova 32, 119991, Moscow, Russia;Robert Koch Institute, Nordufer 20, D-13353, Berlin, Germany
关键词: Cytokine release;    Immunosuppression;    gp41;    Transmembrane envelope protein;    Pathogenesis;    HIV;   
Others  :  1209275
DOI  :  10.1186/1742-4690-9-67
 received in 2012-05-29, accepted in 2012-07-23,  发布年份 2012
PDF
【 摘 要 】

Background

The mechanism by which HIV-1 induces AIDS is still unknown. Previously, synthetic peptides corresponding to the conserved immunosuppressive (isu) domain in gp41 of HIV-1 had been shown to inhibit proliferation and to modulate cytokine expression of immune cells. The question is, whether the viral gp41 can do the same.

Results

We show for the first time that two trimeric forms of glycosylated gp41 released from transfected human cells modulated expression of cytokines and other genes in human PBMCs in the same manner, but at least seven hundred-fold stronger compared to that induced by the isu peptide. Single amino acid substitutions in the isu domain of gp41 introduced by site-directed mutagenesis abrogated this property. Furthermore, replication-competent HIV-1 with a mutation in the isu domain of gp41 did not modulate the cytokine expression, while wild-type virus did. Interestingly, most of the abrogating mutations were not reported in viral sequences derived from infected individuals, suggesting that mutated non-immunosuppressive viruses were eliminated by immune responses. Finally, immunisation of rats with gp41 mutated in the isu domain resulted in increased antibody responses compared with the non-mutated gp41. These results show that non-mutated gp41 is immunosuppressive in immunisation experiments, i.e. in vivo, and this has implications for the vaccine development.

Conclusions

These findings indicate that the isu domain of gp41 modulates cytokine expression in vitro and suppresses antibody response in vivo and therefore may contribute to the virus induced immunodeficiency.

【 授权许可】

   
2012 Morozov et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150602093141521.pdf 1202KB PDF download
Figure 6. 27KB Image download
Figure 5 . 52KB Image download
Figure 4 . 55KB Image download
Figure 3 . 97KB Image download
Figure 2 . 39KB Image download
Figure 1 . 71KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

Figure 3 .

Figure 4 .

Figure 5 .

Figure 6.

【 参考文献 】
  • [1]Forsmann A, Weiss R: Why is HIV a pathogen? Cell 2008, 16:555-560.
  • [2]Chang WL, Barry PA, Szubin R, Wang D, Baumgarth N: Human cytomegalovirus suppresses type I interferon secretion by plasmacytoid dendritic cells through its interleukin 10 homolog. Virology 2009, 390:330-337.
  • [3]Marie JC, Kehren J, Trescol-Biémont MC, Evlashev A, Valentin H: Mechanism of measles virus-induced suppression of inflammatory immune responses. Immunity 2001, 14:69-79.
  • [4]Mocellin S, Marincola F, Rossi CR, Nitti D, Lise M: The multifaceted relationship between IL-10 and adaptive immunity: putting together the pieces of a puzzle. Cytokine Growth Factor Rev 2004, 15:61-76.
  • [5]Moss WJ, Ota MO, Griffin DE: Measles: Immune suppression and immune responses. Int J Biochem Cell Biol 2004, 36:1380-1385.
  • [6]Nicholas J: Human gammaherpesvirus cytokines and chemokine receptors. J Interferon Cytokine Res 2005, 25:373-383.
  • [7]Slobedman B, Barry PA, Spencer JV, Avdic S, Abendroth A: Virus-encoded homologs of cellular interleukin-10 and their control of host immune function. J Virol 2009, 83:9618-9629.
  • [8]Denner J: Immunosuppression by retroviruses: implications for xenotransplantation. Ann N Y Acad Sci 1998, 862:75-86.
  • [9]Oostendorp RA, Meijer CJ, Scheper RJ: Immunosuppression by retroviral-envelope-related proteins, and their role in non-retroviral human disease. Crit Rev Oncol Hematol 1993, 14:189-206.
  • [10]Mangeney M, de Parseval N, Thomas G, Heidmann T: The full-length envelope of an HERV-H human endogenous retrovirus has immunosuppressive properties. J Gen Virol 2001, 82:2515-2518.
  • [11]Mangeney M, Renard M, Schlecht-Louf G, Bouallaga I, Heidmann O, Letzelter C, Richaud A, Ducos B, Heidmann T: Placental syncytins: Genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins. Proc Natl Acad Sci USA 2007, 104:20534-20539.
  • [12]Cianciolo G, Copeland T, Oroszlan S, Snyderman R: Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Science 1985, 230:453-455.
  • [13]Denner J, Norley S, Kurth R: The immunosuppressive peptide of HIV-1: functional domains and immune response in AIDS patients. AIDS 1994, 8:1063-1072.
  • [14]Denner J, Persin C, Vogel T, Haustein D, Norley S, Kurth R: The immunosuppressive peptide of HIV-1 inhibits T and B lymphocyte stimulation. J Acquir Immune Defic Syndr Hum Retrovirol 1996, 12:442-450.
  • [15]Ruegg C, Monell C, Strand M: Inhibition of lymphoproliferation by a synthetic peptide with sequence identity to gp41 of human immunodeficiency virus type 1. J Virol 1989, 63:3257-3260.
  • [16]Ruegg C, Monell C, Strand M: Identification, using synthetic peptides, of the minimum amino acid sequence from the retroviral transmembrane protein p15E required for inhibition of lymphoproliferation and its similarity to gp21 of human T-lymphotropic virus types I and II. J Virol 1989, 63:3250-3256.
  • [17]Haraguchi S, Good R, Day N: Immunosuppressive retroviral peptides: cAMP and cytokine patterns. Immunol Today 1995, 16:595-603.
  • [18]Denner J: How does HIV induce AIDS? The virus protein hypothesis. J Hum Virol 2000, 3:81-82.
  • [19]Koutsonikolis A, Haraguchi S, Brigino EN, Owens UE, Good RA, Day NK: HIV-1 recombinant gp41 induces IL-10 expression and production in peripheral blood monocytes but not in T-lymphocytes. Immunol Lett 1997, 55:109-113.
  • [20]Speth C, Joebstl B, Barcova M, Dierich MP: HIV-1 envelope protein gp41 modulates expression of interleukin-10 and chemokine receptors on monocytes, astrocytes and neurones. AIDS 2000, 14:629-636.
  • [21]Barcova M, Kacani L, Speth C, Dierich MP: gp41 envelope protein of human immunodeficiency virus induces interleukin (IL)-10 in monocytes, but not in B, T, or NK cells, leading to reduced IL-2 and interferon-gamma production. J Infect Dis 1998, 177:905-913.
  • [22]Woessner F, Nagase H: Matrix metalloproteinases and TIMPs. Oxford University Press, New York; 2000.
  • [23]Endo Y, Matsushita M, Fujita T: Role of ficolin in innate immunity and its molecular basis. Immunobiology 2007, 212:371-379.
  • [24]Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, Binley JM, Moore JP, Stiegler G, Katinger H, Burton DR, Parren PW: Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol 2001, 75:10892-10905.
  • [25]Breen EC, Rezai AR, Nakajima K, Beall GN, Mitsuyasu RT, Hirano T, Kishimoto T, Martinez-Maza O: Infection with HIV is associated with elevated IL-6 levels and production. J Immunol 1990, 144:480-484.
  • [26]Norris PJ, Pappalardo BL, Custer B, Spotts G, Hecht FM, Busch MP: Elevations in IL-10, TNF-alpha, and IFN-gamma from the earliest point of HIV Type 1 infection. AIDS Res Hum Retroviruses 2006, 22:757-762.
  • [27]Clerici M, Balotta C, Meroni L, Ferrario E, Riva C, Trabattoni D, Ridolfo A, Villa M, Shearer GM, Moroni M, Galli M: Type 1 cytokine production and low prevalence of viral isolation correlate with long-term nonprogression in HIV infection. AIDS Res Hum Retroviruses 1996, 12:1053-1061.
  • [28]Landay AL, Clerici M, Hashemi F, Kessler H, Berzofsky JA, Shearer GM: In vitro restoration of T cell immune function in human immunodeficiency virus-positive persons: effects of interleukin (IL)-12 and anti-IL-10. J Infect Dis 1996, 173:1085-1091.
  • [29]Brockman MA, Kwon DS, Tighe DP, Pavlik DF, Rosato PC, Sela J, Porichis F, Le Gall S, Waring MT, Moss K, Jessen H, Pereyra F, Kavanagh DG, Walker BD, Kaufmann DE: IL-10 is up-regulated in multiple cell types during viremic HIV infection and reversibly inhibits virus-specific T cells. Blood 2009, 114:346-356.
  • [30]Fiebig U, Hartmann MG, Bannert N, Kurth R, Denner J: Transspecies transmission of the endogenous koala retrovirus (KoRV). J Virol 2006, 80:5651-5654.
  • [31]Chen YH, Ebenbichler C, Vornhagen R, Schulz T, Steindl F, Böck G, Katinger H, Dierich MP: HIV-1 gp41 contains two sites for interaction with several proteins on the helper T-lymphoid cell line, H9. AIDS 1992, 6:533-539.
  • [32]Ebenbichler C, Röder C, Vornhagen R, Rattner , Dierich MP: Cell surface proteins binding to recombinant soluble HIV-1 and HIV-2 transmembran proteins. AIDS 1993, 7:489-495.
  • [33]Henderson LA, Qureshi MN: A peptide inhibitor of human immunodeficiency virus infection binds to novel cell surface polypeptides. J Biol Chem 1993, 268:16291-16297.
  • [34]Denner J, Vogel T, Norley S, Hoffmann A, Kurth R: The immunosuppressive (ISU-) peptide of HIV-1: Binding proteins on lymphocytes detected by different methods. J Cancer Res Clin Oncol 1995, 121(S1):35.
  • [35]Yu T, Xiao Y, Bai Y, Ru Q, Luo G, Dierich MP, Chen Y: Human interferon-beta inhibits binding of HIV-1 gp41 to lymphocyte and monocyte cells and binds the potential receptor protein P50 for HIV-1 gp41. Immunol Lett 2000, 73:19-22.
  • [36]De Weerd NA, Samarajiwa SA: Hertzog PJ Type I interferon receptors: biochemistry and biological functions. J Biol Chem 2007, 282:20053-20057.
  • [37]Fausther-Bovendo H, Vieillard V, Sagan S, Bismuth G, Debré P: HIV gp41 engages gC1qR on CD4+ T cells to induce the expression of an NK ligand through the PIP3/H2O2 pathway. PLoS Pathog 2010, 6:e1000975.
  • [38]Pantaleo G, Graziosi C, Butini L, Pizzo PA, Schnittman SM, Kotler DP, Fauci AS: Lymphoid organs function as major reservoirs for human immunodeficiency virus. Proc Natl Acad Sci U S A 1991, 88:9838-9842.
  • [39]Moore PL, Crooks ET, Porter L, Zhu P, Cayanan CS, Grise H, Corcoran P, Zwick MB, Franti M, Morris L, Roux KH, Burton DR, Binley JM: Nature of nonfunctional envelope proteins on the surface of human immunodeficiency virus type 1. J Virol 2006, 80:2515-2528.
  • [40]Schlecht-Louf G, Renard M, Mangeney M, Letzelter C, Richaud A, Ducos B, Bouallaga I, Heidmann T: Retroviral infection in vivo requires an immune escape virulence factor encrypted in the envelope protein of oncoretroviruses. Proc Natl Acad Sci USA 2010, 107:3782-3787.
  • [41]Goldstein S: Wide range of viral load in healthy african green monkeys naturally infected with simian immunodeficiency virus. J Virol 2000, 74:11744-11753.
  • [42]Hartman AL, Ling L, Nichol ST, Hibberd ML: Whole-genome expression profiling reveals that inhibition of host innate immune response pathways by Ebola virus can be reversed by a single amino acid change in the VP35 protein. J Virol 2008, 82:5348-5358.
  • [43]Kirchhoff F: Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe 2010, 8:55-67.
  • [44]Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB: HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 2009, 137:433-444.
  • [45]Gupta S, Boppana R, Mishra GC, Saha B, Mitra D: HIV-1 Tat suppresses gp120 specific T cell response in IL-10-dependent manner. J Immunol 2008, 180:79-88.
  • [46]Oyaizu N, Chirmule N, Ohnishi Y, Kalyanaraman VS, Pahwa S: Human immunodeficiency virus type 1 envelope glycoproteins gp120 and gp160 induce interleukin-6 production in CD4+ T-cell clones. J Virol 1991, 65:6277-6282.
  • [47]Cavaleiro R, Sousa AE, Loureiro A, Victorino RM: Marked immunosuppressive effects of the HIV-2 envelope protein in spite of the lower HIV-2 pathogenicity. AIDS 2000, 14:2679-2686.
  • [48]Shan M, Klasse PJ, Banerjee K, Dey AK, Iyer SP, Dionisio R, Charles D, Campbell-Gardener L, Olson WC, Sanders RW, Moore JP: HIV-1 gp120 mannoses induce immunosuppressive responses from dendritic cells. PLoS Pathog 2007, 3(11):e169.
  • [49]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 2001, 25:402-408.
  • [50]Briggs JA, Simon MN, Gross I, Kräusslich HG, Fuller SD, Vogt VM, Johnson MC: The stoichiometry of Gag protein in HIV-1. Nature Struct Mol Biol 2004, 11:672-675.
  文献评价指标  
  下载次数:39次 浏览次数:6次