期刊论文详细信息
Retrovirology
The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA
Chen Liang2  Mark A Wainberg2  Fei Guo1  Jian Li1  Yann Le Duff2  Rongyue Lei1  Weijun Zhu1 
[1] MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China;Departments of Medicine, Microbiology & Immunology, McGill University, Montreal H3A 2B4, Canada
关键词: Genome editing;    CRISPR/Cas9;    Reservoir;    Provirus;    HIV-1;   
Others  :  1162844
DOI  :  10.1186/s12977-015-0150-z
 received in 2014-11-25, accepted in 2015-02-09,  发布年份 2015
PDF
【 摘 要 】

Background

Highly active antiretroviral therapy (HAART) has transformed HIV-1 infection from a deadly disease to a manageable chronic illness, albeit does not provide a cure. The recently developed genome editing system called CRISPR/Cas9 offers a new tool to inactivate the integrated latent HIV-1 DNA and may serve as a new avenue toward cure.

Findings

We tested 10 sites in HIV-1 DNA that can be targeted by CRISPR/Cas9. The engineered CRISPR/Cas9 system was introduced into the JLat10.6 cells that are latently infected by HIV-1. The sequencing results showed that each target site in HIV-1 DNA was efficiently mutated by CRISPR/Cas9 with the target site in the second exon of Rev (called T10) exhibiting the highest degree of mutation. As a result, HIV-1 gene expression and virus production were significantly diminished with T10 causing a 20-fold reduction.

Conclusions

The CRISPR/Cas9 complex efficiently mutates and deactivates HIV-1 proviral DNA in latently infected Jurkat cells. Our results also revealed a highly efficient Cas9 target site within the second exon of Rev that represents a promising target to be further explored in the CRISPR/Cas9-based cure strategy.

【 授权许可】

   
2015 Zhu et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150413082008684.pdf 2366KB PDF download
Figure 4. 36KB Image download
Figure 3. 119KB Image download
Figure 2. 93KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Wainberg MA, Zaharatos GJ, Brenner BG: Development of antiretroviral drug resistance. N Engl J Med 2011, 365:637-46.
  • [2]Maartens G, Celum C, Lewin SR: HIV infection: epidemiology, pathogenesis, treatment, and prevention. Lancet 2014, 384:258-71.
  • [3]Siliciano RF, Greene WC: HIV latency. Cold Spring Harb Perspect Med 2012, 1:a007096.
  • [4]Donahue DA, Wainberg MA: Cellular and molecular mechanisms involved in the establishment of HIV-1 latency. Retrovirology 2013, 10:11. BioMed Central Full Text
  • [5]Qu X, Wang P, Ding D, Li L, Wang H, Ma L, et al.: Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells. Nucleic Acids Res 2013, 41:7771-82.
  • [6]Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, et al.: A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2011, 29:143-8.
  • [7]Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al.: Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339:819-23.
  • [8]Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al.: RNA-guided human genome engineering via Cas9. Science 2013, 339:823-6.
  • [9]Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al.: CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315:1709-12.
  • [10]Grissa I, Vergnaud G, Pourcel C: The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 2007, 8:172. BioMed Central Full Text
  • [11]Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, et al.: Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014, 343:84-7.
  • [12]Wang T, Wei JJ, Sabatini DM, Lander ES: Genetic screens in human cells using the CRISPR-Cas9 system. Science 2014, 343:80-4.
  • [13]Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, et al.: High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 2014, 509:487-91.
  • [14]Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C, Yusa K: Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 2014, 32:267-73.
  • [15]Jordan A, Bisgrove D, Verdin E: HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 2003, 22:1868-77.
  • [16]Spina CA, Anderson J, Archin NM, Bosque A, Chan J, Famiglietti M, et al.: An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog 2013, 9:e1003834.
  • [17]Ayrapetov MK, Gursoy-Yuzugullu O, Xu C, Xu Y, Price BD: DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proc Natl Acad Sci U S A 2014, 111:9169-74.
  • [18]Edmunds JW, Mahadevan LC, Clayton AL: Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 2008, 27:406-20.
  • [19]Ebina H, Misawa N, Kanemura Y, Koyanagi Y: Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 2013, 3:2510.
  • [20]Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, et al.: RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A 2014, 111:11461-6.
  • [21]Ye L, Wang J, Beyer AI, Teque F, Cradick TJ, Qi Z, et al.: Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection. Proc Natl Acad Sci U S A 2014, 4:4.
  文献评价指标  
  下载次数:14次 浏览次数:2次