期刊论文详细信息
Particle and Fibre Toxicology
In silico analysis of the fucosylation-associated genome of the human blood fluke Schistosoma mansoni: cloning and characterization of the enzymes involved in GDP-L-fucose synthesis and Golgi import
Timothy P Yoshino1  Xiao-Jun Wu1  Tavis K Anderson3  Nathan A Peterson2 
[1] Current address: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2115 Observatory Drive, Madison, WI 53706, USA;Current address: Department of Entomology, College of Agricultural and Life Sciences, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA;Current address: Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
关键词: Sporocyst;    Miracidium;    Fucosyltransferase;    GDP-L-fucose transport;    GDP-L-fucose synthesis;    Fucosylation;    Fucose;    Schistosome;    Schistosoma mansoni;   
Others  :  1226163
DOI  :  10.1186/1756-3305-6-201
 received in 2013-01-23, accepted in 2013-06-15,  发布年份 2013
【 摘 要 】

Background

Carbohydrate structures of surface-expressed and secreted/excreted glycoconjugates of the human blood fluke Schistosoma mansoni are key determinants that mediate host-parasite interactions in both snail and mammalian hosts. Fucose is a major constituent of these immunologically important glycans, and recent studies have sought to characterize fucosylation-associated enzymes, including the Golgi-localized fucosyltransferases that catalyze the transfer of L-fucose from a GDP-L-fucose donor to an oligosaccharide acceptor. Importantly, GDP-L-fucose is the only nucleotide-sugar donor used by fucosyltransferases and its availability represents a bottleneck in fucosyl-glycotope expression.

Methods

A homology-based genome-wide bioinformatics approach was used to identify and molecularly characterize the enzymes that contribute to GDP-L-fucose synthesis and Golgi import in S. mansoni. Putative functions were further investigated through molecular phylogenetic and immunocytochemical analyses.

Results

We identified homologs of GDP-D-mannose-4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase (GMER), which constitute a de novo pathway for GDP-L-fucose synthesis, in addition to a GDP-L-fucose transporter (GFT) that putatively imports cytosolic GDP-L-fucose into the Golgi. In silico primary sequence analyses identified characteristic Rossman loop and short-chain dehydrogenase/reductase motifs in GMD and GMER as well as 10 transmembrane domains in GFT. All genes are alternatively spliced, generating variants of unknown function. Observed quantitative differences in steady-state transcript levels between miracidia and primary sporocysts may contribute to differential glycotope expression in early larval development. Additionally, analyses of protein expression suggest the occurrence of cytosolic GMD and GMER in the ciliated epidermal plates and tegument of miracidia and primary sporocysts, respectively, which is consistent with previous localization of highly fucosylated glycotopes.

Conclusions

This study is the first to identify and characterize three key genes that are putatively involved in the synthesis and Golgi import of GDP-L-fucose in S. mansoni and provides fundamental information regarding their genomic organization, genetic variation, molecular phylogenetics, and developmental expression in intramolluscan larval stages.

【 授权许可】

   
2013 Peterson et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 9. 129KB Image download
Figure 8. 128KB Image download
Figure 7. 119KB Image download
Figure 6. 156KB Image download
Figure 5. 140KB Image download
Figure 4. 189KB Image download
Figure 3. 208KB Image download
Figure 2. 101KB Image download
Figure 1. 84KB Image download
Figure 2. 17KB Image download
Figure 8. 128KB Image download
Figure 7. 119KB Image download
Figure 6. 156KB Image download
Figure 5. 140KB Image download
Figure 4. 189KB Image download
Figure 3. 208KB Image download
Figure 2. 101KB Image download
Figure 1. 84KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 2.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Hokke CH, Deelder AM, Hoffmann KF, Wuhrer M: Glycomics-driven discoveries in schistosome research. Exp Parasitol 2007, 117:275-283.
  • [2]Fitzpatrick JM, Peak E, Perally S, Chalmers IW, Barrett J, Yoshino TP, Ivens AC, Hoffmann KF: Anti-schistosomal intervention targets identified by lifecycle transcriptomic analyses. PLoS Negl Trop Dis 2009, 3:e543.
  • [3]Peterson NA, Anderson TK, Yoshino TP: In silico analysis of the fucosylation-associated genome of the human blood fluke Schistosoma mansoni: cloning and characterization of the fucosyltransferase multigene family. PLoS One 2013, 8:e63299.
  • [4]van Remoortere A, Hokke CH, van Dam GJ, van Die I, Deelder AM, van den Eijnden DH: Various stages of Schistosoma express LewisX, LacdiNAc, GalNAcβ1-4(Fucα1-3)GlcNAc, and GalNAcβ1-4(Fucα1-2Fucα1-3)GlcNAc carbohydrate epitopes: detection with monoclonal antibodies that are characterized enzymatically synthesized neoglycoproteins. Glycobiology 2000, 10:601-609.
  • [5]Robijn ML, Wuhrer M, Kornelis D, Deelder AM, Geyer R, Hokke CH: Mapping fucosylated epitopes on glycoproteins and glycolipids of Schistosoma mansoni cercariae, adult worms, and eggs. Parasitology 2005, 130:67-77.
  • [6]Wuhrer M, Koeleman CA, Fitzpatrick JM, Hoffmann KF, Deelder AM, Hokke CH: Gender-specific expression of complex-type N-glycans in schistosomes. Glycobiology 2006, 16:991-1006.
  • [7]Peterson NA, Hokke CH, Deelder AM, Yoshino TP: Glycotope analysis in miracidia and primary sporocysts of Schistosoma mansoni: differential expression during the miracidium-to-sporocyst transformation. Int J Parasitol 2009, 39:1331-1344.
  • [8]Stanley P: Golgi glycosylation. Cold Harbor Springs Perspect Biol 2011, 3:a005199.
  • [9]Becker DJ, Lowe JB: Fucose: biosynthesis and biological function in mammals. Glycobiology 2003, 13:41R-53R.
  • [10]Yurchenco PD, Atkinson PH: Equilibration of fucosyl glycoprotein pools in Hela cells. Biochemistry 1977, 16:944-953.
  • [11]Rhomberg S, Fuchsluger C, Rendić D, Paschinger K, Jantsch V, Kosma P, Wilson IB: Reconstitution in vitro of the GDP-fucose biosynthetic pathways of Caenorhabditis elegans and Drosophila melanogaster. FEBS J 2006, 273:2244-2256.
  • [12]Park SH, Pastuszak I, Drake R, Elbein AD: Purification to apparent homogeneity and properties of pig kidney L-fucose kinase. J Biol Chem 1998, 273:5685-5691.
  • [13]Pastuszak I, Ketchum C, Hermanson G, Sjoberg EJ, Drake R, Elbein AD: GDP-L-fucose pyrophosphorylase. Purification, cDNA cloning, and properties of the enzyme. J Biol Chem 1998, 273:30165-30174.
  • [14]Hinderlich S, Berger M, Blume A, Chen H, Ghaderi D, Bauer C: Identification of human L-fucose kinase amino acid sequence. Biochem Biophys Res Commun 2002, 294:650-654.
  • [15]Niittymäki J, Mattila P, Roos C, Huopaniemi L, Sjöblom S, Renkonen R: Cloning and expression of murine enzymes involved in the salvage pathway of GDP-L-fucose. Eur J Biochem 2004, 271:78-86.
  • [16]Coyne MJ, Reinap B, Lee MM, Comstock LE: Human symbionts use a host-like pathway for surface fucosylation. Science 2005, 307:1778-1781.
  • [17]Kotake T, Hojo S, Tajima N, Matsuoka K, Koyama T, Tsumuraya Y: A bifunctional enzyme with L-fucokinase and GDP-L-fucose pyrophosphorylase activities salvages free L-fucose in Arabidopsis. J Biol Chem 2008, 283:8125-8135.
  • [18]Roos C, Kolmer M, Mattila P, Renkonen R: Composition of Drosophila melanogaster proteome involved in fucosylated glycan metabolism. J Biol Chem 2002, 277:3168-3175.
  • [19]Caffaro CE, Hirschberg CB: Nucleotide sugar transporters of the Golgi apparatus: from basic science to diseases. Acc Chem Res 2006, 39:805-812.
  • [20]Noda K, Miyoshi E, Gu J, Gao CX, Nakahara S, Kitada T, Honke K, Suzuki K, Yoshihara H, Yoshikawa K, Kawano K, Tonetti M, Kasahara A, Hori M, Hayashi N, Taniguchi N: Relationship between elevated FX expression and increased production of GDP-L-fucose, a common donor substrate for fucosylation in human hepatocellular carcinoma and hepatoma cell lines. Cancer Res 2003, 63:6282-6289.
  • [21]Moriwaki K, Noda K, Nakagawa T, Asahi M, Yoshihara H, Taniguchi N, Hayashi N, Miyoshi E: A high expression of GDP-fucose transporter in hepatocellular carcinoma is a key factor for increases in fucosylation. Glycobiology 2007, 17:1311-1320.
  • [22]Niittymäki J, Mattila P, Renkonen R: Differential gene expression of GDP-L-fucose-synthesizing enzymes, GDP-fucose transporter and fucosyltransferase VII. APMIS 2006, 114:539-548.
  • [23]Omasa T, Tanaka R, Doi T, Ando M, Kitamoto Y, Honda K, Kishimoto M, Ohtake H: Decrease in antithrombin III fucosylation by expressing GDP-fucose transporter siRNA in Chinese hamster ovary cells. J Biosci Bioeng 2008, 106:168-173.
  • [24]Frydman M, Etzioni A, Eidlitz-Markus T, Avidor I, Varsano I, Shechter Y, Orlin JB, Gershoni-Baruch R: Rambam-Hasharon syndrome of psychomotor retardation, short stature, defective neutrophil motility, and Bombay phenotype. Am J Med Genet 1992, 44:297-302.
  • [25]Etzioni A, Frydman M, Pollack S, Avidor I, Phillips ML, Paulson JC, Gershoni-Baruch R: Brief report: recurrent severe infections caused by a novel leukocyte adhesion deficiency. N Engl J Med 1992, 327:1789-1792.
  • [26]Lübke T, Marquardt T, von Figura K, Körner C: A new type of carbohydrate-deficient glycoprotein syndrome due to a decreased import of GDP-fucose into the golgi. J Biol Chem 1999, 274:25986-25989.
  • [27]Lübke T, Marquardt T, Etzioni A, Hartmann E, von Figura K, Körner C: Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet 2001, 28:73-76.
  • [28]Lühn K, Wild MK, Eckhardt M, Gerardy-Schahn R, Vestweber D: The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat Genet 2001, 28:69-72.
  • [29]Helmus Y, Denecke J, Yakubenia S, Robinson P, Lühn K, Watson DL, McGrogan PJ, Vestweber D, Marquardt T, Wild MK: Leukocyte adhesion deficiency II patients with a dual defect of the GDP-fucose transporter. Blood 2006, 107:3959-3966.
  • [30]Hellbusch CC, Sperandio M, Frommhold D, Yakubenia S, Wild MK, Popovici D, Vestweber D, Gröne HJ, von Figura K, Lübke T, Körner C: Golgi GDP-fucose transporter-deficient mice mimic congenital disorder of glycosylation IIc/leukocyte adhesion deficiency II. J Biol Chem 2007, 282:10762-10772.
  • [31]Yoshino TP, Laursen JR: Production of Schistosoma mansoni daughter sporocysts from mother sporocysts maintained in synxenic culture with Biomphalaria glabrata embryonic (Bge) cells. J Parasitol 1995, 81:714-722.
  • [32]Nolan LE, Carriker JP: Observations on the biology of the snail Lymnaea stagnalis appressa during twenty years of laboratory culture. Am Midl Nat 1946, 36:467-493.
  • [33]Chernin E: Observations on hearts explanted in vitro from the snail Australorbis glabratus. J Parasitol 1963, 49:353-364.
  • [34]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [35]Zerlotini A, Heiges M, Wang H, Moraes RL, Dominitini AJ, Ruiz JC, Kissinger JC, Oliveira G: SchistoDB: a Schistosoma mansoni genome resource. Nucleic Acids Res 2009, 37:D579-D582.
  • [36]Ohyama C, Smith PL, Angata K, Fukuda MN, Lowe JB, Fukuda M: Molecular cloning and expression of GDP-D-mannose-4,6-dehydratase, a key enzyme for fucose metabolism defective in Lec13 cells. J Biol Chem 1998, 273:14582-14587.
  • [37]Sullivan FX, Kumar R, Kriz R, Stahl M, Xu GY, Rouse J, Chang XJ, Boodhoo A, Potvin B, Cumming DA: Molecular cloning of human GDP-mannose 4,6-dehydratase and reconstitution of GDP-fucose biosynthesis in vitro. J Biol Chem 1998, 273:8193-8202.
  • [38]Bisso A, Sturla L, Zanardi D, De Flora A, Tonetti M: Structural and enzymatic characterization of human recombinant GDP-D-mannose-4,6-dehydratase. FEBS Lett 1999, 456:370-374.
  • [39]Imai-Nishiya H, Mori K, Inoue M, Wakitani M, Iida S, Shitara K, Satoh M: Double knockdown of α1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnol 2007, 7:84. BioMed Central Full Text
  • [40]Tonetti M, Sturla L, Bisso A, Benatti U, De Flora A: Synthesis of GDP-L-fucose by the human FX protein. J Biol Chem 1996, 271:27274-27279.
  • [41]Zipin A, Israeli-Amit M, Meshel T, Sagi-Assif O, Yron I, Lifshitz V, Bacharach E, Smorodinsky NI, Many A, Czernilofsky PA, Morton DL, Witz IP: Tumor-microenvironment interactions: the fucose-generating FX enzyme controls adhesive properties of colorectal cancer cells. Cancer Res 2004, 64:6571-6578.
  • [42]Quirk S, Seley KL: Substrate discrimination by the human GTP fucose pyrophosphorylase. Biochemistry 2005, 44:10854-10863.
  • [43]Quirk S, Seley KL: Identification of catalytic amino acids in the human GTP fucose pyrophosphorylase active site. Biochemistry 2005, 44:13172-13178.
  • [44]Smith PL, Myers JT, Rogers CE, Zhou L, Petryniak B, Becker DJ, Homeister JW, Lowe JB: Conditional control of selectin ligand expression and global fucosylation events in mice with a targeted mutation at the FX locus. J Cell Biol 2002, 158:801-815.
  • [45]Becker DJ, Myers JT, Ruff MM, Smith PL, Gillespie BW, Ginsburg DW, Lowe JB: Strain-specific modification of lethality in fucose-deficient mice. Mamm Genome 2003, 14:130-139.
  • [46]Ohata S, Kinoshita S, Aoki R, Tanaka H, Wada H, Tsuruoka-Kinoshita S, Tsuboi T, Watabe S, Okamoto H: Neuroepithelial cells require fucosylated glycans to guide the migration of vagus motor neuron progenitors in the developing zebrafish hindbrain. Development 2009, 136:1653-1663.
  • [47]Song Y, Willer JR, Scherer PC, Panzer JA, Kugath A, Skordalakes E, Gregg RG, Willer GB, Balice-Gordon RJ: Neural and synaptic defects in slytherin, a zebrafish model for human congenital disorders of glycosylation. PLoS One 2010, 5:e13743.
  • [48]Ren Y, Perepelov AV, Wang H, Zhang H, Knirel YA, Wang L, Chen W: Biochemical characterization of GDP-L-fucose de novo synthesis pathway in fungus Mortierella alpina. Biochem Biophys Res Commun 2010, 391:1663-1669.
  • [49]Bonin CP, Freshour G, Hahn MG, Vanzin GF, Reiter WD: The GMD1 and GMD2 genes of Arabidopsis encode isoforms of GDP-D-mannose 4,6-dehydratase with cell type-specific expression patterns. Plant Physiol 2003, 132:883-892.
  • [50]Bonin CP, Potter I, Vanzin GF, Reiter WD: The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDP-D-mannose-4,6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-L-fucose. Proc Natl Acad Sci USA 1997, 94:2085-2090.
  • [51]Bonin CP, Reiter WD: A bifunctional epimerase-reductase acts downstream of the MUR1 gene product and completes the de novo synthesis of GDP-L-fucose in Arabidopsis. Plant J 2000, 21:445-454.
  • [52]Nakayama K, Maeda Y, Jigami Y: Interaction of GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase with GDP-mannose-4,6-dehydratase stabilizes the enzyme activity for formation of GDP-fucose from GDP-mannose. Glycobiology 2003, 13:673-680.
  • [53]Wang W, Hu T, Frantom PA, Zheng T, Gerwe B, Del Amo DS, Garret S, Seidel RD 3rd, Wu P: Chemoenzymatic synthesis of GDP-L-fucose and the Lewis X glycan derivatives. Proc Natl Acad Sci USA 2009, 106:16096-16101.
  • [54]Hirschberg CB: Golgi nucleotide sugar transport and leukocyte adhesion deficiency II. J Clin Invest 2001, 108:3-6.
  • [55]Ashikov A, Routier F, Fuhlrott J, Helmus Y, Wild M, Gerardy-Schahn R, Bakker H: The human solute carrier gene SLC35B4 encodes a bifunctional nucleotide sugar transporter with specificity for UDP-xylose and UDP-N-acetylglucosamine. J Biol Chem 2005, 280:27230-27235.
  • [56]Ishida N, Yoshioka S, Chiba Y, Takeuchi M, Kawakita M: Molecular cloning and functional expression of the human Golgi UDP-N-acetylglucosamine transporter. J Biochem 1999, 126:68-77.
  • [57]Suda T, Kamiyama S, Suzuki M, Kikuchi N, Nakayama K, Narimatsu H, Jigami Y, Aoki T, Nishihara S: Molecular cloning and characterization of a human multisubstrate specific nucleotide-sugar transporter homologous to Drosophila fringe connection. J Biol Chem 2004, 279:26469-26474.
  • [58]Muraoka M, Kawakita M, Ishida N: Molecular characterization of human UDP-glucuronic acid/UDP-N-acetylgalactosamine transporter, a novel nucleotide sugar transporter with dual substrate specificity. FEBS Lett 2001, 495:87-93.
  • [59]Miura N, Ishida N, Hoshino M, Yamauchi M, Hara T, Ayusawa D, Kawakita M: Human UDP-galactose translocator: molecular cloning of a complementary DNA that complements the genetic defect of a mutant cell line deficient in UDP-galactose translocator. J Biochem 1996, 120:236-241.
  • [60]Aoki K, Ishida N, Kawakita M: Substrate recognition by UDP-galactose and CMP-sialic acid transporters. Different sets of transmembrane helices are utilized for the specific recognition of UDP-galactose and CMP-sialic acid. J Biol Chem 2001, 276:21555-21561.
  • [61]Aoki K, Ishida N, Kawakita M: Substrate recognition by nucleotide sugar transporters: further characterization of substrate recognition regions by analyses of UDP-galactose/CMP-sialic acid transporter chimeras and biochemical analysis of the substrate specificity of parental and chimeric transporters. J Biol Chem 2003, 278:22887-22893.
  • [62]Segawa H, Kawakita M, Ishida N: Human and Drosophila UDP-galactose transporters transportUDP-N-acetylgalactosamine in addition to UDP-galactose. Eur J Biochem 2002, 269:128-138.
  • [63]Guillen E, Abeijon C, Hirschberg CB: Mammalian Golgi apparatus UDP-N-acetylglucosamine transporter: molecular cloning by phenotypic correction of a yeast mutant. Proc Natl Acad Sci USA 1998, 95:7888-7892.
  • [64]Olczak M, Guillen E: Characterization of a mutation and an alternative splicing of UDP-galactose transporter in MDCK-RCAr cell line. Biochim Biophys Acta 2006, 1763:82-92.
  • [65]Yakubenia S, Frommhold D, Schölch D, Hellbusch CC, Körner C, Petri B, Jones C, Ipe U, Bixel MG, Krempien R, Sperandio M, Wild MK: Leukocyte trafficking in a mouse model for leukocyte adhesion deficiency II/congenital disorder of glycosylation IIc. Blood 2008, 112:1472-1481.
  • [66]Yazbek SN, Buchner DA, Geisinger JM, Burrage LC, Spiezio SH, Zentner GE, Hsieh CW, Scacheri PC, Croniger CM, Nadeau JH: Deep congenic analysis identifies many strong, context-dependent QTLs, one of which, Slc35b4, regulates obesity and glucose homeostasis. Genome Res 2011, 21:1065-1073.
  • [67]Ishida N, Yoshioka S, Iida M, Sudo K, Miura N, Aoki K, Kawakita M: Indispensability of transmembrane domains of Golgi UDP-galactose transporter as revealed by analysis of genetic defects in UDP-galactose transporter-deficient murine had-1 mutant cell lines and construction of deletion mutants. J Biochem 1999, 126:1107-1117.
  • [68]Maggioni A, von Itzstein M, Gerardy-Schahn R, Tiralongo J: Targeting the expression of functional murine CMP-sialic acid transporter to the E. coli inner membrane. Biochem Biophys Res Commun 2007, 362:779-784.
  • [69]Eckhardt M, Gerardy-Schahn R: Molecular cloning of the hamster CMP-sialic acid transporter. Eur J Biochem 1997, 248:187-192.
  • [70]Lühn K, Laskowska A, Pielage J, Klämbt C, Ipe U, Vestweber D, Wild MK: Identification and molecular cloning of a functional GDP-fucose transporter in Drosophila melanogaster. Exp Cell Res 2004, 301:242-250.
  • [71]Ishikawa HO, Higashi S, Ayukawa T, Sasamura T, Kitagawa M, Harigaya K, Aoki K, Ishida N, Sanai Y, Matsuno K: Notch deficiency implicated in the pathogenesis of congenital disorder of glycosylation IIc. Proc Natl Acad Sci USA 2005, 102:18532-18537.
  • [72]Ishikawa HO, Ayukawa T, Nakayama M, Higashi S, Kamiyama S, Nishihara S, Aoki K, Ishida N, Sanai Y, Matsuno K: Two pathways for importing GDP-fucose into the endoplasmic reticulum lumen function redundantly in the O-fucosylation of Notch in Drosophila. J Biol Chem 2010, 285:122-4129.
  • [73]Goto S, Taniguchi M, Muraoka M, Toyoda H, Sado Y, Kawakita M, Hayashi S: UDP-sugar transporter implicated in glycosylation and processing of Notch. Nat Cell Biol 2001, 3:816-822.
  • [74]Selva EM, Hong K, Baeg GH, Beverley SM, Turco SJ, Perrimon N, Häcker U: Dual role of the fringe connection gene in both heparan sulphate and fringe-dependent signalling events. Nat Cell Biol 2001, 3:809-815.
  • [75]Aumiller JJ, Jarvis DL: Expression and functional characterization of a nucleotide sugar transporter from Drosophila melanogaster: relevance to protein glycosylation in insect cell expression systems. Protein Expr Purif 2002, 26:438-448.
  • [76]Berninsone P, Hwang HY, Zemtseva I, Horvitz HR, Hirschberg CB: SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N-acetylgalactosamine, and UDP-galactose. Proc Natl Acad Sci USA 2001, 98:3738-3743.
  • [77]Hong K, Ma D, Beverley SM, Turco SJ: The Leishmania GDP-mannose transporter is an autonomous, multi-specific, hexameric complex of LPG2 subunits. Biochemistry 2000, 39:2013-2022.
  • [78]Cottrell TR, Griffith CL, Liu H, Nenninger AA, Doering TL: The pathogenic fungus Cryptococcus neoformans expresses two functional GDP-mannose transporters with distinct expression patterns and roles in capsule synthesis. Eukaryot Cell 2007, 6:776-785.
  • [79]Roy SK, Chiba Y, Takeuchi M, Jigami Y: Characterization of Yeast Yea4p, a uridine diphosphate-N-acetylglucosamine transporter localized in the endoplasmic reticulum and required for chitin synthesis. J Biol Chem 2000, 275:13580-13587.
  • [80]Nishikawa A, Poster JB, Jigami Y, Dean N: Molecular and phenotypic analysis of CaVRG4, encoding an essential Golgi apparatus GDP-mannose transporter. J Bacteriol 2002, 184:29-42.
  • [81]Nishikawa A, Mendez B, Jigami Y, Dean N: Identification of a Candida glabrata homologue of the S. cerevisiae VRG4 gene, encoding the Golgi GDP-mannose transporter. Yeast 2002, 19:691-698.
  • [82]Baldwin TC, Handford MG, Yuseff MI, Orellana A, Dupree P: Identification and characterization of GONST1, a golgi-localized GDP-mannose transporter in Arabidopsis. Plant Cell 2001, 13:2283-2295.
  • [83]Handford MG, Sicilia F, Brandizzi F, Chung JH, Dupree P: Arabidopsis thaliana expresses multiple Golgi-localised nucleotide-sugar transporters related to GONST1. Mol Genet Genomics 2004, 272:397-410.
  • [84]Norambuena L, Marchant L, Berninsone P, Hirschberg CB, Silva H, Orellana A: Transport of UDP-galactose in plants. Identification and functional characterization of AtUTr1, an Arabidopsis thaliana UDP-galactos/UDP-glucose transporter. J Biol Chem 2002, 277:32923-32929.
  • [85]Rollwitz I, Santaella M, Hille D, Flügge UI, Fischer K: Characterization of AtNST-KT1, a novel UDP-galactosetransporter from Arabidopsis thaliana. FEBS Lett 2006, 580:4246-4251.
  • [86]Bakker H, Routier F, Oelmann S, Jordi W, Lommen A, Gerardy-Schahn R, Bosch D: Molecular cloning of two Arabidopsis UDP-galactose transporters by complementation of a deficient Chinese hamster ovary cell line. Glycobiology 2005, 15:193-201.
  • [87]Owczarzy R, Tataurov AV, Wu Y, Manthey JA, McQuisten KA, Almabrazi HG, Pedersen KF, Lin Y, Garretson J, McEntaggart NO, Sailor CA, Dawson RB, Peek AS: IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res 2008, 36:W163-W169.
  • [88]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [89]Maddison WP, Maddison DR: Mesquite: a modular system for evolutionary analysis. Version 2.72. http://mesquiteproject.org webcite
  • [90]Price MN, Dehal PS, Arkin AP: FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2010, 5:e9490.
  • [91]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [92]Huelsenbeck JP, Bollback JP: Empirical and hierarchical Bayesian estimation of ancestral states. Syst Biol 2001, 50:351-366.
  • [93]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [94]Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL: AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 2008, 24:581-583.
  • [95]Applied Biosystems: Guide to performing relative quantitation of gene expression using real-time quantitative PCR. Foster City, CA; 2008.
  • [96]Williams DL, Sayed AA, Bernier J, Birkeland SR, Cipriano MJ, Papa AR, McArthur AG, Taft A, Vermeire JJ, Yoshino TP: Profiling Schistosoma mansoni development using serial analysis of gene expression (SAGE). Exp Parasitol 2007, 117:246-258.
  • [97]Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT: The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009, 55:611-622.
  • [98]Kalsotra A, Cooper TA: Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet 2011, 12:715-729.
  • [99]Lantner F, Ziv E, Ram D, Schechter I: Different forms of the mRNA encoding the heat-shock transcription factor are expressed during the life cycle of the parasitic helminth Schistosoma mansoni. Eur J Biochem 1998, 253:390-398.
  • [100]Ram D, Ziv E, Lantner F, Lardans V, Schechter I: Stage-specific alternative splicing of the heat-shock transcription factor during the life-cycle of Schistosoma mansoni. Parasitology 2004, 129:587-596.
  • [101]DeMarco R, Oliveira KC, Venancio TM, Verjovski-Almeida S: Gender biased differential alternative splicing patterns of the transcriptional cofactor CA150 gene in Schistosoma mansoni. Mol Biochem Parasitol 2007, 150:123-131.
  • [102]Bottoms CA, Smith PE, Tanner JJ: A structurally conserved water molecule in Rossman dinucleotide-binding domains. Protein Sci 2002, 11:2125-2137.
  • [103]Somoza JR, Menon S, Schmidt H, Joseph-McCarthy D, Dessen A, Stahl ML, Somers WS, Sullivan FX: Structural and kinetic analysis of Escherichia coli GDP-mannose 4,6 dehydratase provides insights into the enzyme's catalytic mechanism and regulation by GDP-fucose. Structure 2000, 8:123-135.
  • [104]Mulichak AM, Bonin CP, Reiter WD, Garavito RM: Structure of the MUR1 GDP-mannose 4,6-dehydratase from Arabidopsis thaliana: implications for ligand binding and specificity. Biochemistry 2002, 41:15578-15589.
  • [105]Rosano C, Bisso A, Izzo G, Tonetti M, Sturla L, De Flora A, Bolognesi M: Probing the catalytic mechanism of GDP-4-keto-6-deoxy-d-mannose Epimerase/Reductase by kinetic and crystallographic characterization of site-specific mutants. J Mol Biol 2000, 303:77-91.
  • [106]Schultz J, Milpetz F, Bork P, Ponting CP: SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 1998, 95:5857-5864.
  • [107]Käll L, Krogh A, Sonnhammer EL: Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res 2007, 35:W429-W432.
  • [108]Martinez-Duncker I, Mollicone R, Codogno P, Oriol R: The nucleotide-sugar transporter family: a phylogenetic approach. Biochimie 2003, 85:245-260.
  • [109]Jack DL, Yang NM, Saier MH Jr: The drug/metabolite transporter superfamily. Eur J Biochem 2001, 268:3620-3639.
  • [110]Sonnhammer ELL, von Heijne G, Krogh A: A hidden Markov model for predicting transmembrane helices in protein sequences. In Procedings of the Sixth International Conference on Intelligent Systems for Molecular Biology: 28 June-1 July, 1998; Montréal, Québec, Canada. Edited by Glasgow J, Littlejohn T, Major F, Lathrop R, Sankoff D, Sensen C. Menlo Park, CA: Association for the Advancement of Artificial Intelligence Press; 1998:175-182.
  • [111]Hofmann K, Stoffel W: TMbase - A database of membrane spanning proteins segments. Biol Chem Hoppe Seyler 1993, 347:166.
  • [112]Berninsone PM, Hirschberg CB: Nucleotide sugar transporters of the Golgi apparatus. Curr Opin Struct Biol 2000, 10:542-547.
  • [113]Munro S: A comparison of the transmembrane domains of Golgi and plasma membrane proteins. Biochem Soc Trans 1995, 23:527-530.
  • [114]Yuan Z, Teasdale RD: Prediction of Golgi Type II membrane proteins based on their transmembrane domains. Bioinformatics 2002, 18:1109-1115.
  • [115]Sharpe HJ, Stevens TJ, Munro S: A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 2010, 142:158-169.
  • [116]Handford M, Rodriguez-Furlán C, Orellana A: Nucleotide-sugar transporters: structure, function and roles in vivo. Braz J Med Biol Res 2006, 39:1149-1158.
  • [117]Lehr T, Beuerlein K, Doenhoff MJ, Grevelding CG, Geyer R: Localization of carbohydrate determinants common to Biomphalaria glabrata as well as to sporocysts and miracidia of Schistosoma mansoni. Parasitology 2008, 135:931-942.
  • [118]Mäki M, Renkonen R: Biosynthesis of 6-deoxyhexose glycans in bacteria. Glycobiology 2004, 14:1R-15R.
  文献评价指标  
  下载次数:105次 浏览次数:30次