Molecular Neurodegeneration | |
An intronic PICALM polymorphism, rs588076, is associated with allelic expression of a PICALM isoform | |
Steven Estus2  David W Fardo3  Steven Younkin1  Christopher Medway1  Ishita Parikh2  | |
[1] Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, USA;Departments of Physiology, Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY 40536, USA;Biostatistics, Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY 40536, USA | |
关键词: Single nucleotide polymorphism; Allelic expression imbalance; Next-generation sequencing; Alzheimer’s disease; PICALM; | |
Others : 1138750 DOI : 10.1186/1750-1326-9-32 |
|
received in 2014-07-24, accepted in 2014-08-21, 发布年份 2014 |
【 摘 要 】
Background
Although genome wide studies have associated single nucleotide polymorphisms (SNP)s near PICALM with Alzheimer’s disease (AD), the mechanism underlying this association is unclear. PICALM is involved in clathrin-mediated endocytosis and modulates Aß clearance in vitro. Comparing allelic expression provides the means to detect cis-acting regulatory polymorphisms. Thus, we evaluated whether PICALM showed allele expression imbalance (AEI) and whether this imbalance was associated with the AD-associated polymorphism, rs3851179.
Results
We measured PICALM allelic expression in 42 human brain samples by using next-generation sequencing. Overall, PICALM demonstrated equal allelic expression with no detectable influence by rs3851179. A single sample demonstrated robust global PICALM allelic expression imbalance (AEI), i.e., each of the measured isoforms showed AEI. Moreover, the PICALM isoform lacking exons 18 and 19 (D18-19 PICALM) showed significant AEI in a subset of individuals. Sequencing these individuals and subsequent genotyping revealed that rs588076, located in PICALM intron 17, was robustly associated with this imbalance in D18-19 PICALM allelic expression (p = 9.54 x 10-5). This polymorphism has been associated previously with systolic blood pressure response to calcium channel blocking agents. To evaluate whether this polymorphism was associated with AD, we genotyped 3269 individuals and found that rs588076 was modestly associated with AD. However, when both the primary AD SNP rs3851179 was added to the logistic regression model, only rs3851179 was significantly associated with AD.
Conclusions
PICALM expression shows no evidence of AEI associated with rs3851179. Robust global AEI was detected in one sample, suggesting the existence of a rare SNP that strongly modulates PICALM expression. AEI was detected for the D18-19 PICALM isoform, and rs588076 was associated with this AEI pattern. Conditional on rs3851179, rs588076 was not associated with AD risk, suggesting that D18-19 PICALM is not critical in AD. In summary, this analysis of PICALM allelic expression provides novel insights into the genetics of PICALM expression and AD risk.
【 授权许可】
2014 Parikh et al.; licensee BioMed Central Ltd.
Files | Size | Format | View |
---|---|---|---|
Figure 2. | 41KB | Image | download |
Figure 5. | 96KB | Image | download |
Figure 4. | 58KB | Image | download |
Figure 3. | 42KB | Image | download |
Figure 2. | 41KB | Image | download |
Figure 1. | 36KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 2.
【 参考文献 】
- [1]Baig S, Joseph SA, Tayler H, Abraham R, Owen MJ, Williams J, Kehoe PG, Love S: Distribution and expression of picalm in Alzheimer disease. J Neuropathol Exp Neurol 2010, 69:1071-1077.
- [2]Parikh I, Fardo DW, Estus S: Genetics of PICALM expression and Alzheimer’s disease. PLoS One 2014, 9:e91242.
- [3]Xiao Q, Gil SC, Yan P, Wang Y, Han S, Gonzales E, Perez R, Cirrito JR, Lee JM: Role of phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) in intracellular amyloid precursor protein (APP) processing and amyloid plaque pathogenesis. J Biol Chem 2012, 287:21279-21289.
- [4]D’Angelo F, Vignaud H, Di Martino J, Salin B, Devin A, Cullin C, Marchal C: A yeast model for amyloid-beta aggregation exemplifies the role of membrane trafficking and PICALM in cytotoxicity. Dis Model Mech 2013, 6:206-216.
- [5]Kanatsu K, Morohashi Y, Suzuki M, Kuroda H, Watanabe T, Tomita T, Iwatsubo T: Decreased CALM expression reduces Abeta42 to total Abeta ratio through clathrin-mediated endocytosis of gamma-secretase. Nat Commun 2014, 5:3386.
- [6]Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, et al.: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 2009, 41:1088-1093.
- [7]Jun G, Naj AC, Beecham GW, Wang LS, Buros J, Gallins PJ, Buxbaum JD, Ertekin-Taner N, Fallin MD, Friedland R, Inzelberg R, Kramer P, Rogaeva E, St George-Hyslop P, Cantwell LB, Dombroski BA, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Lunetta KL, Martin ER, Montine TJ, Goate AM, Blacker D, Tsuang DW, Beekly D, Cupples LA, Hakonarson H, Kukull W, et al.: Meta-analysis confirms CR1, CLU, and PICALM as alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch Neurol 2010, 67:1473-1484.
- [8]Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, Letenneur L, Bettens K, Berr C, Pasquier F, Fievet N, Barberger-Gateau P, Engelborghs S, De Deyn P, Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O, de Pancorbo MM, Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, Bosco P, et al.: Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 2009, 41:1094-1099.
- [9]Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, Bis JC, Smith AV, Carassquillo MM, Lambert JC, Harold D, Schrijvers EM, Ramirez-Lorca R, Debette S, Longstreth WT Jr, Janssens AC, Pankratz VS, Dartigues JF, Hollingworth P, Aspelund T, Hernandez I, Beiser A, Kuller LH, Koudstaal PJ, Dickson DW, Tzourio C, Abraham R, Antunez C, Du Y, Rotter JI, et al.: Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 2010, 303:1832-1840.
- [10]Pedraza O, Allen M, Jennette K, Carrasquillo M, Crook J, Serie D, Pankratz VS, Palusak R, Nguyen T, Malphrus K, Ma L, Bisceglio G, Roberts RO, Lucas JA, Ivnik RJ, Smith GE, Graff-Radford NR, Petersen RC, Younkin SG, Ertekin-Taner N: Evaluation of memory endophenotypes for association with CLU, CR1, and PICALM variants in black and white subjects. Alzheimers Dement 2014, 10:205-213.
- [11]Liu G, Zhang S, Cai Z, Ma G, Zhang L, Jiang Y, Feng R, Liao M, Chen Z, Zhao B, Li K: PICALM gene rs3851179 polymorphism contributes to Alzheimer’s disease in an Asian population. Neuromolecular Med 2013, 15:384-388.
- [12]Miyashita A, Koike A, Jun G, Wang LS, Takahashi S, Matsubara E, Kawarabayashi T, Shoji M, Tomita N, Arai H, Asada T, Harigaya Y, Ikeda M, Amari M, Hanyu H, Higuchi S, Ikeuchi T, Nishizawa M, Suga M, Kawase Y, Akatsu H, Kosaka K, Yamamoto T, Imagawa M, Hamaguchi T, Yamada M, Moriaha T, Takeda M, Takao T, Nakata K, et al.: SORL1 is genetically associated with late-onset Alzheimer’s disease in Japanese, Koreans and Caucasians. PloS one 2013, 8:e58618.
- [13]Yu JT, Song JH, Ma T, Zhang W, Yu NN, Xuan SY, Tan L: Genetic association of PICALM polymorphisms with Alzheimer’s disease in Han Chinese. J Neurol Sci 2011, 300:78-80.
- [14]Li HL, Shi SS, Guo QH, Ni W, Dong Y, Liu Y, Sun YM, Bei W, Lu SJ, Hong Z, Wu ZY: PICALM and CR1 variants are not associated with sporadic Alzheimer’s disease in Chinese patients. J Alzheimers Dis 2011, 25:111-117.
- [15]Chen LH, Kao PY, Fan YH, Ho DT, Chan CS, Yik PY, Ha JC, Chu LW, Song YQ: Polymorphisms of CR1, CLU and PICALM confer susceptibility of Alzheimer’s disease in a southern Chinese population. Neurobiol Aging 2012, 33:210. e211-217
- [16]Mondal AK, Sharma NK, Elbein SC, Das SK: Allelic expression imbalance screening of genes in chromosome 1q21-24 region to identify functional variants for Type 2 diabetes susceptibility. Physiol Genomics 2013, 45:509-520.
- [17]Jones BL, Swallow DM: The impact of cis-acting polymorphisms on the human phenotype. The HUGO journal 2011, 5:13-23.
- [18]Pham MH, Bonello GB, Castiblanco J, Le T, Sigala J, He W, Mummidi S: The rs1024611 regulatory region polymorphism is associated with CCL2 allelic expression imbalance. PLoS One 2012, 7:e49498.
- [19]Jentarra GM, Rice SG, Olfers S, Saffen D, Narayanan V: Evidence for population variation in TSC1 and TSC2 gene expression. BMC Med Genet 2011, 12:29.
- [20]Smith RM, Webb A, Papp AC, Newman LC, Handelman SK, Suhy A, Mascarenhas R, Oberdick J, Sadee W: Whole transcriptome RNA-Seq allelic expression in human brain. BMC Genomics 2013, 14:571.
- [21]Kamide K, Asayama K, Katsuya T, Ohkubo T, Hirose T, Inoue R, Metoki H, Kikuya M, Obara T, Hanada H, Thijs L, Kuznetsova T, Noguchi Y, Sugimoto K, Ohishi M, Morimoto S, Nakahashi T, Takiuchi S, Ishimitsu T, Tsuchihashi T, Soma M, Higaki J, Matsuura H, Shinagawa T, Sasaguri T, Miki T, Takeda K, Shimamoto K, Ueno M, Hosomi N, et al.: Genome-wide response to antihypertensive medication using home blood pressure measurements: a pilot study nested within the HOMED-BP study. Pharmacogenomics 2013, 14:1709-1721.
- [22]Xu X, Wang H, Zhu M, Sun Y, Tao Y, He Q, Wang J, Chen L, Saffen D: Next-generation DNA sequencing-based assay for measuring allelic expression imbalance (AEI) of candidate neuropsychiatric disorder genes in human brain. BMC Genomics 2011, 12:518.
- [23]Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, de Bakker PI: SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 2008, 24:2938-2939.
- [24]Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K: dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001, 29:308-311.
- [25]Scotland PB, Heath JL, Conway AE, Porter NB, Armstrong MB, Walker JA, Klebig ML, Lavau CP, Wechsler DS: The PICALM protein plays a key role in iron homeostasis and cell proliferation. PLoS One 2012, 7:e44252.
- [26]Malik M, Simpson JF, Parikh I, Wilfred BR, Fardo DW, Nelson PT, Estus S: CD33 Alzheimer’s Risk-Altering Polymorphism, CD33 Expression, and Exon 2 Splicing. J Neurosci 2013, 33:13320-13325.
- [27]Ling IF, Bhongsatiern J, Simpson JF, Fardo DW, Estus S: Genetics of clusterin isoform expression and Alzheimer’s disease risk. PLoS One 2012, 7:e33923.
- [28]Fleige S, Pfaffl MW: RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 2006, 27:126-139.
- [29]Thomas M, William ML, Mattieu M, Rishi N, Bert O, Miguel P, Bethan P, Emily P, Harpreet Singh R, Graham RS R, Magali R, Michael S, Daniel S, Daniel S, Kieron T, Anja T, Stephen T, Simon W, Wilder SP, Aken BL, Ewan B, Fiona C, Ian D, Jennifer H, Javier H, Tim JP H, Nathan J, Rhoda K, Anne P, Giulietta S, et al.: Ensembl 2014. Nucleic Acids Research 2014, 42(Database issue):D749-D755.
- [30]Jiang H, Wong WH: Statistical inferences for isoform expression in RNA-Seq. Bioinformatics 2009, 25:1026-1032.
- [31]Ridge PG, Mukherjee S, Crane PK, Kauwe JS, Alzheimer’s Disease Genetics C: Alzheimer’s disease: analyzing the missing heritability. PLoS One 2013, 8:e79771.
- [32]Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JS, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, et al.: Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 2011, 43:436-441.
- [33]Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007, 81:559-575.