| Particle and Fibre Toxicology | |
| Feeding patterns of molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in a region of high hybridization | |
| João Pinto3  Martin J Donnelly1  António PG Almeida2  Eliane Arez3  Isabel Calderón3  Leonor Pinho2  José L Vicente3  Carla A Sousa2  Bruno Gomes3  | |
| [1] Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK;Unidade de Parasitologia e Microbiologia Médicas, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, Lisboa, 1349-008, Portugal;Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, Lisboa, 1349-008, Portugal | |
| 关键词: Resting behaviour; Host preferences; Hybridization; Molestus; Culex pipiens; | |
| Others : 1228009 DOI : 10.1186/1756-3305-6-93 |
|
| received in 2013-01-09, accepted in 2013-03-22, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
Two biological forms of the mosquito Culex pipiens s.s., denoted pipiens and molestus, display behavioural differences that may affect their role as vectors of arboviruses. In this study, the feeding patterns of molestus and pipiens forms were investigated in Comporta (Portugal), where high levels of inter-form admixture have been recorded.
Methods
Indoor and outdoor mosquito collections were performed in the summer of 2010. Collected Cx. pipiens s.l. females were molecularly identified to species and form by PCR and genotyped for six microsatellites. The source of the blood meal in post-fed females was determined by ELISA and mitochondrial DNA sequencing.
Results
The distribution of the forms differed according to the collection method. The molestus form was present only in indoor collections, whereas pipiens and admixed individuals were sampled both indoors and outdoors. In both forms, over 90% of blood meals were made on avian hosts. These included blood meals taken from Passeriformes (Passer domesticus and Turdus merula) by females caught resting inside domestic shelters.
Conclusion
Genetic structure and blood meal analyses suggest the presence of a bird biting molestus population in the study area. Both forms were found to rest indoors, mainly in avian shelters, but at least a proportion of females of the pipiens form may bite outdoors in sylvan habitats and then search for anthropogenic resting sites to complete their gonotrophic cycle. This behaviour may potentiate the accidental transmission of arboviruses to humans in the region.
【 授权许可】
2013 Gomes et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150930085133508.pdf | 1988KB | ||
| Figure 2. | 132KB | Image | |
| Figure 1. | 77KB | Image |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Medlock JM, Snow KR, Leach S: Potential transmission of West Nile virus in the British Isles: an ecological review of candidate mosquito bridge vectors. Med Vet Entomol 2005, 19:2-21.
- [2]Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, Fleischer RC, Wilkerson RC: Emerging Vectors in the Culex pipiens Complex. Science 2004, 303:1535-1538.
- [3]Hamer GL, Kitron UD, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Walker ED: Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans. J Med Entomol 2008, 45:125-128.
- [4]Zeller HG, Schuffenecker I: West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas. Eur J Clin Microbiol Infect Dis 2004, 23:147-156.
- [5]Calzolari M, Gaibani P, Bellini R, Defilippo F, Pierro A, Albieri A, Maioli G, Luppi A, Rossini G, Balzani A, Tamba M, Galletti G, Gelati A, Carrieri M, Poglayen G, Cavrini F, Natalini S, Dottori M, Sambri V, Angelini P, Bonilauri P: Mosquito, bird and human surveillance of West Nile and usutu viruses in Emilia-Romagna region (Italy) in 2010. PLoS ONE 2012, 7:e38058.
- [6]Vinogradova AN: Culex pipiens pipiens mosquitoes:Taxonomy, Distribution, Ecology, Physiology, Genetics, Applied Importance and Control. Sofia: Pensoft Publishers; 2000:222.
- [7]Clements AN: The Biology of Mosquitoes. Sensory Reception and Behaviour Volume 2. Wallingford: CABI Publishing; 1999:752.
- [8]Harbach RE, Dahl C, White GB: Culex (Culex) pipiens Linnaeus (Diptera, Culicidae) - concepts, type designations, and description. Proc Entomol Soc Wash 1985, 87:1-24.
- [9]Harbach RE, Harrison BA, Gad AM: Culex (Culex) molestus Forskål (Diptera, Culicidae) - neotype designation, description, variation, and taxonomic status. Proc Entomol Soc Wash 1984, 86:521-542.
- [10]Byrne K, Nichols RA: Culex pipiens in London Underground tunnels: differentiation between surface and subterranean populations. Heredity 1999, 82:7-15.
- [11]Huang S, Molaei G, Andreadis TG: Genetic insights into the population structure of Culex pipiens (Diptera: Culicidae) in the Northeastern United States by using microsatellite analysis. Am J Trop Med Hyg 2008, 79:518-527.
- [12]Gomes B, Sousa CA, Novo MT, Freitas FB, Alves R, Corte-Real AR, Salgueiro P, Donnelly M, Almeida AP, Pinto J: Asymmetric introgression between sympatric molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in the Comporta region. Portugal. BMC Evol Biol 2009, 9:262. BioMed Central Full Text
- [13]Nudelman S, Galun R, Kitron U, Spielman A: Physiological characteristics of Culex pipiens populations in the Middle East. Med Vet Entomol 1988, 2:161-169.
- [14]Chevillon C, Eritja R, Pasteur N, Raymond M: Commensalism, adaptation and gene flow: mosquitoes of the Culex pipiens complex in different habitats. Genet Res 1995, 66:147-157.
- [15]Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, Fonseca DM: Genetic influences on mosquito feeding behavior and the emergence of zoonotic pathogens. Am J Trop Med Hyg 2007, 77:667-671.
- [16]Spielman A: Structure and seasonality of nearctic Culex pipiens populations. Ann NY Acad Sci 2001, 951:220-234.
- [17]Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P: West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 2006, 4:e82.
- [18]Toma L, Cipriani M, Goffredo M, Romi R, Lelli R: First report on entomological field activities for the surveillance of West Nile disease in Italy. Vet Ital 2008, 44:499-512.
- [19]Almeida APG, Freitas FB, Novo MT, Sousa CA, Rodrigues JC, Alves R, Esteves A: Mosquito surveys and West Nile virus screening in two different areas of Southern Portugal, 2004–2007. Vector-Borne Zoonotic Dis 2010, 10:673-680.
- [20]Calzolari M, Bonilauri P, Bellini R, Albieri A, Defilippo F, Maioli G, Galletti G, Gelati A, Barbieri I, Tamba M, Lelli D, Carra E, Cordioli P, Angelini P, Dottori M: Evidence of simultaneous circulation of West Nile and Usutu viruses in mosquitoes sampled in Emilia-Romagna region (Italy) in 2009. PLoS ONE 2010, 5:e14324.
- [21]Balenghien T, Fouque F, Sabatier P, Bicout DJ: Theoretical formulation for mosquito host-feeding patterns: Application to a West Nile virus focus of southern France. J Med Entomol 2011, 48:1076-1090.
- [22]Muñoz J, Ruiz S, Soriguer R, Alcaide M, Viana DS, Roiz D, Vázquez A, Figuerola J: Feeding patterns of potential West Nile virus vectors in South-west Spain. PLoS ONE 2012, 7:e39549.
- [23]Osório HC, Zé-Zé L, Alves MJ: Host-feeding patterns of Culex pipiens and other potential mosquito vectors (Diptera: Culicidae) of West Nile virus (Flaviviridae) collected in Portugal. J Med Entomol 2012, 49:717-721.
- [24]Rappole JH, Hubálek Z: Migratory birds and West Nile virus. J Appl Microbiol 2003, 94:47-58.
- [25]Hubálek Z: Mosquito-borne viruses in Europe. Parasitol Res 2008, 103:29-43.
- [26]Peel MC, Finlayson BL, McMahon TA: Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 2007, 4:1633-1644.
- [27]Sudia WD, Chamberlain RW: Battery-operated light trap. An improved model. Mosq News 1962, 22:126-129.
- [28]Ribeiro H, Ramos HC: Identification keys of the mosquitoes (Diptera: Culicidae) of Continental Portugal, Acores and Madeira. Eur Mosq Bull 1999, 3:1-11.
- [29]Donnelly MJ, Cuamba N, Charlwood JD, Collins FH, Townson H: Population structure in the malaria vector, Anopheles arabiensis Patton, in East Africa. Heredity 1999, 83:408-417.
- [30]Smith JL, Fonseca DM: Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am J Trop Med Hyg 2004, 70:339-345.
- [31]Banks MA, Eichert W, Olsen JB: Which genetic loci have greater population assignment power? Bioinformatics 2003, 19:1436-1438.
- [32]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-959.
- [33]Bahnck CM, Fonseca DM: Rapid assay to identify the two genetic forms of Culex (Culex) pipiens L. (Diptera: Culicidae) and hybrid populations. Am J Trop Med Hyg 2006, 75:251-255.
- [34]Gomes B, Kioulos E, Papa A, Almeida APG, Vontas J, Pinto J: Distribution and hybridization of Culex pipiens forms in Greece during the West Nile virus outbreak of 2010. Infect Genet Evol 2013, 16:218-225.
- [35]Simões MJ, Próspero MI, Henrique R: Optimização da técnica ELISA “two sites” utilizada na identificação de refeições sanguíneas de mosquitos. Rev Port Doenc Infec 1995, 18:225-229.
- [36]Hamer GL, Kitron UD, Goldberg TL, Brawn JD, Loss SR, Ruiz MO, Hayes DB, Walker ED: Host selection by Culex pipiens mosquitoes and West Nile virus amplification. Am J Trop Med Hyg 2009, 80:268-278.
- [37]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95-98.
- [38]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 2005, 14:2611-2620.
- [39]Jakobsson M, Rosenberg NA: CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23:1801-1806.
- [40]Vähä J-P, Primmer CR: Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 2006, 15:63-72.
- [41]Nei M: Molecular Evolutionary Genetics. New York: Colombia University Press; 1987:512.
- [42]Goudet J: FSTAT (version 1.2): A computer program to calculate F-statistics. J Hered 1995, 86:485-486.
- [43]Kalinowski ST: HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 2005, 5:187-189.
- [44]Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 2005, 1:47-50.
- [45]Slatkin M, Excoffier L: Testing for linkage disequilibrium in genotypic data using the Expectation-Maximization algorithm. Heredity 1996, 76:377-383.
- [46]Van Oosterhout C, Hutchinson W, Wills D, Shipley P: Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 2004, 4:535-538.
- [47]VassarStats: Web Site for Statistical Computation. [http://vassarstats.net/index.html webcite]
- [48]Holm S: A simple sequentially rejective multiple test procedure. Scand J Stat 1979, 6:65-70.
- [49]World Health Organization: Manual on Practical Entomology in Malaria. Part II: Methods and Techniques Geneva. Geneva; 1975:191.
- [50]Molaei G, Andreadis TG, Armstrong PM, Anderson JF, Vossbrinck CR: Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg Infect Dis 2006, 12:468-474.
- [51]Ribeiro H, Pires CA, Ramos HC, Capela RA: Research on the mosquitoes of Portugal (Diptera, Culicicae). VIII- On the occurrence of Culex (Culex) molestus Forskål, 1775. J Soc Cienc Med Lisb 1983, 147:185-188.
- [52]Huang S, Hamer GL, Molaei G, Walker ED, Goldberg TL, Kitron UD, Andreadis TG: Genetic variation associated with mammalian feeding in Culex pipiens from a West Nile virus epidemic region in Chicago, Illinois. Vector-Borne Zoonotic Dis 2009, 9:637-642.
- [53]Sousa CA: Malaria vectorial capacity and competence of Anopheles atroparvus Van Thiel, 1927 (Diptera, Culicidae): Implications for the potential re-emergence of malaria in Portugal. PhD thesis. Universidade Nova de Lisboa, Instituto de Higiene e Medicina Tropical; 2008.
- [54]Formosinho P, Santos-Silva MM, Santos A, Melo P, Encarnação V, Santos N, Nunes T, Agrícola R, Portas M: O vírus West Nile em Portugal – estudos de vigilância epidemiológica. Rev Port. Cienc Vet 2006, 101:61-68.
- [55]Wheeler SS, Barker CM, Fang Y, Veronica Armijos M, Carroll BD, Husted S, Johnson WO, Reisen WK: Differential Impact of West Nile virus on California Birds. Condor 2009, 111:1-20.
- [56]Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M: Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 2003, 9:311-322.
- [57]Molaei G, Andreadis TG, Armstrong PM, Bueno R Jr, Dennett JA, Real SV, Sargent C, Bala A, Randle Y, Guzman H, Da Rosa AT, Wuithiranyagool T, Tesh RB: Host feeding pattern of Culex quinquefasciatus (Diptera: Culicidae) and its role in transmission of West Nile virus in Harris County, Texas. Am J Trop Med Hyg 2007, 77:73-81.
PDF