Molecular Neurodegeneration | |
Frontotemporal dementia-associated N279K tau mutant disrupts subcellular vesicle trafficking and induces cellular stress in iPSC-derived neural stem cells | |
Guojun Bu1  Takahisa Kanekiyo1  Zbigniew K. Wszolek3  Dennis W. Dickson1  Owen A. Ross1  Rosa Rademakers1  Pawel Tacik3  Audrey J. Strongosky3  Kotaro Ogaki1  Hirotaka J. Okano2  Yuan Fu1  Mary D. Davis1  Yuka Atagi1  Melissa E. Murray1  Chia-Chen Liu1  Jing Zhao1  Melissa C. Wren1  | |
[1] Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville 32224, FL, USA;Division of Regenerative Medicine, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Tokyo 105-8461, Minato-ku, Japan;Department of Neurology, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville 32224, FL, USA | |
关键词: Tau; PPND; Neural stem cells; N279K; iPSCs; FTDP-17; | |
Others : 1225450 DOI : 10.1186/s13024-015-0042-7 |
|
received in 2015-08-17, accepted in 2015-09-07, 发布年份 2015 | |
【 摘 要 】
Background
Pallido-ponto-nigral degeneration (PPND), a major subtype of frontotemporal dementia with parkinsonism related to chromosome 17 (FTDP-17), is a progressive and terminal neurodegenerative disease caused by c.837 T > G mutation in the MAPT gene encoding microtubule-associated protein tau (rs63750756; N279K). This MAPT mutation induces alternative splicing of exon 10, resulting in a modification of microtubule-binding region of tau. Although mutations in the MAPT gene have been linked to multiple tauopathies including Alzheimer’s disease, frontotemporal dementia and progressive supranuclear palsy, knowledge regarding how tau N279K mutation causes PPND/FTDP-17 is limited.
Results
We investigated the underlying disease mechanism associated with the N279K tau mutation using PPND/FTDP-17 patient-derived induced pluripotent stem cells (iPSCs) and autopsy brains. In iPSC-derived neural stem cells (NSCs), the N279K tau mutation induced an increased ratio of 4-repeat to 3-repeat tau and accumulation of stress granules indicating elevated cellular stress. More significant, NSCs derived from patients with the N279K tau mutation displayed impaired endocytic trafficking as evidenced by accumulation of endosomes and exosomes, and a reduction of lysosomes. Since there were no significant differences in cellular stress and distribution of subcellular organelles between control and N279K skin fibroblasts, N279K-related vesicle trafficking defects are likely specific to the neuronal lineage. Consistently, the levels of intracellular/luminal vesicle and exosome marker flotillin-1 were significantly increased in frontal and temporal cortices of PPND/FTDP-17 patients with the N279K tau mutation, events that were not seen in the occipital cortex which is the most spared cortical region in the patients.
Conclusion
Together, our results demonstrate that alterations of intracellular vesicle trafficking in NSCs/neurons likely contribute to neurodegeneration as an important disease mechanism underlying the N279K tau mutation in PPND/FTDP-17.
【 授权许可】
2015 Wren et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150920043635851.pdf | 3802KB | download | |
Fig. 6. | 42KB | Image | download |
Fig. 5. | 203KB | Image | download |
Fig. 4. | 88KB | Image | download |
Fig. 3. | 90KB | Image | download |
Fig. 2. | 92KB | Image | download |
Fig. 1. | 181KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
【 参考文献 】
- [1]Wszolek Z, Tsuboi Y, Ghetti B, Pickering-Brown S, Baba Y, Cheshire W. Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Orphanet J Rare Dis. 2006; 1:30. BioMed Central Full Text
- [2]Siuda J, Fujioka S, Wszolek ZK. Parkinsonian syndrome in familial frontotemporal dementia. Parkinsonism Relat Disord. 2014; 20:957-964.
- [3]Fujioka S, Wszolek Z. Clinical aspects of familial forms of frontotemporal dementia associated with parkinsonism. J Mol Neurosci. 2011; 45:359-365.
- [4]Tsuboi Y, Uitti RJ, Delisle MB, Ferreira JJ, Brefel-Courbon C, Rascol O et al.. Clinical features and disease haplotypes of individuals with the N279K tau gene mutation: a comparison of the pallidopontonigral degeneration kindred and a French family. Arch Neurol. 2002; 59:943-950.
- [5]Ghetti B, Hutton ML, Wszolek ZK. Frontotemporal dementia and parkinsonism linked to chromosome 17, in neurodegeneration: the molecular pathology of dementia and movement disorders. Second edition edn. Wiley-Blackwell, Oxford, UK; 2011.
- [6]Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol. 2013; 12:609-622.
- [7]Kalbfuss B, Mabon SA, Misteli T. Correction of alternative splicing of tau in frontotemporal dementia and parkinsonism linked to chromosome 17. J Biol Chem. 2001; 276:42986-42993.
- [8]Lindquist SG, Holm IE, Schwartz M, Law I, Stokholm J, Batbayli M et al.. Alzheimer disease-like clinical phenotype in a family with FTDP-17 caused by a MAPT R406W mutation. Eur J Neurol. 2008; 15:377-385.
- [9]Kouri N, Carlomagno Y, Baker M, Liesinger AM, Caselli RJ, Wszolek ZK et al.. Novel mutation in MAPT exon 13 (p.N410H) causes corticobasal degeneration. Acta Neuropathol. 2014; 127:271-282.
- [10]Fujioka S, Sanchez Contreras MY, Strongosky AJ, Ogaki K, Whaley NR, Tacik PM, van Gerpen JA, Uitti RJ, Ross OA, Wszolek ZK, et al: Three sib-pairs of autopsy-confirmed progressive supranuclear palsy. Parkinsonism Relat Disord. 2015;21:101–5.
- [11]Van Swieten J, Spillantini MG. Hereditary frontotemporal dementia caused by Tau gene mutations. Brain Pathol. 2007; 17:63-73.
- [12]Slowinski J, Dominik J, Uitti RJ, Ahmed Z, Dickson DD, Wszolek ZK. Frontotemporal dementia and Parkinsonism linked to chromosome 17 with the N279K tau mutation. Neuropathology. 2007; 27:73-80.
- [13]Reed LA, Wszolek ZK, Hutton M. Phenotypic correlations in FTDP-17. Neurobiol Aging. 2001; 22:89-107.
- [14]Arvanitakis Z, Witte RJ, Dickson DW, Tsuboi Y, Uitti RJ, Slowinski J et al.. Clinical-pathologic study of biomarkers in FTDP-17 (PPND family with N279K tau mutation). Parkinsonism Relat Disord. 2007; 13:230-239.
- [15]Yamanaka S. Strategies and New developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell. 2007; 1:39-49.
- [16]Hargus G, Ehrlich M, Hallmann AL, Kuhlmann T. Human stem cell models of neurodegeneration: a novel approach to study mechanisms of disease development. Acta Neuropathol. 2014; 127:151-173.
- [17]Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S et al.. A more efficient method to generate integration-free human iPS cells. Nat Meth. 2011; 8:409-412.
- [18]Kedersha N, Anderson P. Mammalian stress granules and processing bodies. Methods Enzymol. 2007; 431:61-81.
- [19]Vanderweyde T, Yu H, Varnum M, Liu-Yesucevitz L, Citro A, Ikezu T et al.. Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies. J Neurosci. 2012; 32:8270-8283.
- [20]Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007; 8:663-672.
- [21]Stuermer CA. The reggie/flotillin connection to growth. Trends Cell Biol. 2010; 20:6-13.
- [22]Rodriguez-Martin T, Anthony K, Garcia-Blanco MA, Mansfield SG, Anderton BH, Gallo JM. Correction of tau mis-splicing caused by FTDP-17 MAPT mutations by spliceosome-mediated RNA trans-splicing. Hum Mol Genet. 2009; 18:3266-3273.
- [23]Goedert MJR. Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO. 1990; 9:4225-4230.
- [24]Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI et al.. Mutation-specific functional impairments in distinct Tau isoforms of hereditary FTDP-17. Science. 1998; 282:1914-1917.
- [25]Landry MC, Sicotte A, Champagne C, Lavoie JN. Regulation of cell death by recycling endosomes and golgi membrane dynamics via a pathway involving Src-family kinases, Cdc42 and Rab11a. Mol Biol Cell. 2009; 20:4091-4106.
- [26]Neefjes J, van der Kant R. Stuck in traffic: an emerging theme in diseases of the nervous system. Trends Neurosci. 2014; 37:66-76.
- [27]Langhorst MF, Reuter A, Jaeger FA, Wippich FM, Luxenhofer G, Plattner H et al.. Trafficking of the microdomain scaffolding protein reggie-1/flotillin-2. Eur J Cell Biol. 2008; 87:211-226.
- [28]Stuermer CA, Lang DM, Kirsch F, Wiechers M, Deininger SO, Plattner H. Glycosylphosphatidyl inositol-anchored proteins and fyn kinase assemble in noncaveolar plasma membrane microdomains defined by reggie-1 and -2. Mol Biol Cell. 2001; 12:3031-3045.
- [29]Phuyal S, Hessvik NP, Skotland T, Sandvig K, Llorente A. Regulation of exosome release by glycosphingolipids and flotillins. FEBS J. 2014; 281:2214-2227.
- [30]Luzio JP, Pryor PR, Bright NA. Lysosomes: fusion and function. Nat Rev Mol Cell Biol. 2007; 8:622-632.
- [31]Skibinski G, Parkinson NJ, Brown JM, Chakrabarti L, Lloyd SL, Hummerich H et al.. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet. 2005; 37:806-808.
- [32]Isaacs AM, Johannsen P, Holm I, Nielsen JE. Frontotemporal dementia caused by CHMP2B mutations. Curr Alzheimer Res. 2011; 8:246-251.
- [33]Parkinson N, Ince PG, Smith MO, Highley R, Skibinski G, Andersen PM et al.. ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology. 2006; 67:1074-1077.
- [34]Urwin H, Ghazi-Noori S, Collinge J, Isaacs A. The role of CHMP2B in frontotemporal dementia. Biochem Soc Trans. 2009; 37:208-212.
- [35]Kurashige T, Takahashi T, Yamazaki Y, Hiji M, Izumi Y, Yamawaki T et al.. Localization of CHMP2B-immunoreactivity in the brainstem of Lewy body disease. Neuropathology. 2013; 33:237-245.
- [36]Yamazaki Y, Takahashi T, Hiji M, Kurashige T, Izumi Y, Yamawaki T et al.. Immunopositivity for ESCRT-III subunit CHMP2B in granulovacuolar degeneration of neurons in the Alzheimer’s disease hippocampus. Neurosci Lett. 2010; 477:86-90.
- [37]Girardot N, Allinquant B, Langui D, Laquerriere A, Dubois B, Hauw JJ et al.. Accumulation of flotillin-1 in tangle-bearing neurones of Alzheimer’s disease. Neuropathol Appl Neurobiol. 2003; 29:451-461.
- [38]Schneider A, Simons M. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res. 2013; 352:33-47.
- [39]Simon D, Garcia-Garcia E, Gomez-Ramos A, Falcon-Perez JM, Diaz-Hernandez M, Hernandez F et al.. Tau overexpression results in its secretion via membrane vesicles. Neurodegener Dis. 2012; 10:73-75.