Journal of Nanobiotechnology | |
Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes | |
Chiranjib Chakraborty3  Sang-Soo Lee4  George Priya C. Doss1  Ju-Suk Nam4  Ashish Ranjan Sharma4  Garima Sharma2  | |
[1] Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India;Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, India;Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, India;Institute For Skeletal Aging, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon 200704, Korea | |
关键词: Pulmonary drug delivery; Oral drug delivery; Type-1 diabetes mellitus (T1DM); Insulin delivery; Nanocarrier; | |
Others : 1231701 DOI : 10.1186/s12951-015-0136-y |
|
received in 2015-06-09, accepted in 2015-10-15, 发布年份 2015 | |
【 摘 要 】
Diabetic cases have increased rapidly in recent years throughout the world. Currently, for type-1 diabetes mellitus (T1DM), multiple daily insulin (MDI) injections is the most popular treatment throughout the world. At this juncture, researchers are trying to develop different insulin delivery systems, especially through oral and pulmonary route using nanocarrier based delivery system. This next generation efficient therapy for T1DM may help to improve the quality of life of diabetic patients who routinely employ insulin by the subcutaneous route. In this paper, we have depicted various next generation nanocarrier based insulin delivery systems such as chitosan-insulin nanoparticles, PLGA-insulin nanoparticles, dextran-insulin nanoparticles, polyalkylcyanoacrylated-insulin nanoparticles and solid lipid-insulin nanoparticles. Modulation of these insulin nanocarriers may lead to successful oral or pulmonary insulin nanoformulations in future clinical settings. Therefore, applications and limitations of these nanoparticles in delivering insulin to the targeted site have been thoroughly discussed.
【 授权许可】
2015 Sharma et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151110091903534.pdf | 1175KB | download | |
Fig.2. | 19KB | Image | download |
Fig.1. | 54KB | Image | download |
【 图 表 】
Fig.1.
Fig.2.
【 参考文献 】
- [1]Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011; 94(3):311-321.
- [2]Chakraborty C, Roy SS, Hsu MJ, Agoramoorthy G. Landscape mapping of functional proteins in insulin signal transduction and insulin resistance: a network-based protein-protein interaction analysis. PLoS One. 2011; 6(1):e16388.
- [3]Kuzuya T, Nakagawa S, Satoh J, Kanazawa Y, Iwamoto Y, Kobayashi M et al. Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Res Clin Pract. 2002;55(1):65–85. ([pii]: S0168822701003655).
- [4]Owens DR, Zinman B, Bolli GB. Insulins today and beyond. Lancet. 2001; 358(9283):739-746.
- [5]Bener A, Saleh NM, Al-Hamaq A. Prevalence of gestational diabetes and associated maternal and neonatal complications in a fast-developing community: global comparisons. Int J Womens Health. 2011; 3:367-373.
- [6]Standards of medical care in diabetes. Diabetes Care. 2013;36(Suppl 1):S11–S66. doi:10.2337/dc13-S011.
- [7]Hypoglycemia: a pitfall of insulin therapy. West J Med. 1983;139(5):688–95.
- [8]Kennedy FP. Recent developments in insulin delivery techniques. Current status and future potential. Drugs. 1991; 42(2):213-227.
- [9]Monaco L, Geffken G, Silverstein JH. Accuracy of injection site identification among children with insulin dependent diabetes mellitus: a comparison of traditional and new visual aids. Clin Pediatr (Phila). 1996; 35(4):191-197.
- [10]Carlson MG, Campbell PJ. Intensive insulin therapy and weight gain in IDDM. Diabetes. 1993; 42(12):1700-1707.
- [11]Carino GP, Jacob JS, Mathiowitz E. Nanosphere based oral insulin delivery. J Control Release. 2000;65(1–2):261–9 ([pii]: S0168-3659(99)00247-3).
- [12]The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329(14):977–86. doi:10.1056/NEJM199309303291401.
- [13]Hinchcliffe M, Illum L. Intranasal insulin delivery and therapy. Adv Drug Deliv Rev. 1999;35(2–3):199–234. ([pii]: S0169-409X(98)00073-8).
- [14]Stanley SA, Gagner JE, Damanpour S, Yoshida M, Dordick JS, Friedman JM. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science. 2012; 336(6081):604-608.
- [15]Khan Ghilzai NM. New developments in insulin delivery. Drug Dev Ind Pharm. 2003; 29(3):253-265.
- [16]Borchard G, Lueβen HL, de Boer AG, Verhoef JC, Lehr CM, Junginger HE. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J Control Release. 1996; 39(2–3):131-138.
- [17]Lowman AM, Morishita M, Kajita M, Nagai T, Peppas NA. Oral delivery of insulin using pH-responsive complexation gels. J Pharm Sci. 1999; 88(9):933-937.
- [18]Fasano A, Uzzau S. Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J Clin Invest. 1997; 99(6):1158-1164.
- [19]Uchida T, Toida Y, Sakakibara S, Miyanaga Y, Tanaka H, Nishikata M et al.. Preparation and characterization of insulin-loaded acrylic hydrogels containing absorption enhancers. Chem Pharm Bull (Tokyo). 2001; 49(10):1261-1266.
- [20]Yamamoto A, Taniguchi T, Rikyuu K, Tsuji T, Fujita T, Murakami M et al.. Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats. Pharm Res. 1994; 11(10):1496-1500.
- [21]Marschutz MK, Caliceti P, Bernkop-Schnurch A. Design and in vivo evaluation of an oral delivery system for insulin. Pharm Res. 2000; 17(12):1468-1474.
- [22]Kavimandan NJ, Losi E, Peppas NA. Novel delivery system based on complexation hydrogels as delivery vehicles for insulin-transferrin conjugates. Biomaterials. 2006; 27(20):3846-3854.
- [23]Musabayane CT, Munjeri O, Bwititi P, Osim EE. Orally administered, insulin-loaded amidated pectin hydrogel beads sustain plasma concentrations of insulin in streptozotocin-diabetic rats. J Endocrinol. 2000;164(1):1–6. ([pii]: JOE03436).
- [24]Gordon Still J. Development of oral insulin: progress and current status. Diabetes Metab Res Rev. 2002;18(Suppl 1):S29–37. doi:10.1002/dmrr.207.
- [25]Xia CQ, Wang J, Shen WC. Hypoglycemic effect of insulin-transferrin conjugate in streptozotocin-induced diabetic rats. J Pharmacol Exp Ther. 2000; 295(2):594-600.
- [26]Jin Y, Song Y, Zhu X, Zhou D, Chen C, Zhang Z et al.. Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials. 2012; 33(5):1573-1582.
- [27]Kotzé AF, Lueßen HL, de Leeuw BJ, de Boer BG. Coos Verhoef J, Junginger HE. Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J Control Release. 1998; 51(1):35-46.
- [28]O’Hagan DT. The intestinal uptake of particles and the implications for drug and antigen delivery. J Anat. 1996; 189(Pt 3):477-482.
- [29]Varma MV, Ashokraj Y, Dey CS, Panchagnula R. P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement. Pharmacol Res. 2003; 48(4):347-359.
- [30]Singhal G, Bhavesh R, Kasariya K, Sharma A, Singh R. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res. 2011; 13(7):2981-2988.
- [31]Singhal G, Bhavesh R, Sharma AR, Singh RP. ecofriendly biosynthesis of gold nanoparticles using medicianally important Ocimum basilicum leaf extract. Adv Sci Eng Med. 2012; 4(1):62-66.
- [32]Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010; 75(1):1-18.
- [33]Chakraborty C, Pal S, Doss GP, Wen ZH, Lin CS. Nanoparticles as ‘smart’ pharmaceutical delivery. Front Biosci (Landmark Ed). 2013;18:1030–1050. ([pii]: 4161).
- [34]des Rieux A, Fievez V, Garinot M, Schneider YJ, Preat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116(1):1–27. doi:10.1016/j.jconrel.2006.08.013.
- [35]Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009; 86(3):215-223.
- [36]Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE. Characterization of nanoparticles for therapeutics. Nanomedicine (Lond). 2007; 2(6):789-803.
- [37]Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009; 3(1):16-20.
- [38]Roger E, Lagarce F, Garcion E, Benoit JP. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine (Lond). 2010; 5(2):287-306.
- [39]Vandamme K, Melkebeek V, Cox E, Deforce D, Lenoir J, Adriaens E et al.. Influence of reaction medium during synthesis of Gantrez AN 119 nanoparticles for oral vaccination. Eur J Pharm Biopharm. 2010; 74(2):202-208.
- [40]Lochner N, Pittner F, Wirth M, Gabor F. Wheat germ agglutinin binds to the epidermal growth factor receptor of artificial Caco-2 membranes as detected by silver nanoparticle enhanced fluorescence. Pharm Res. 2003; 20(5):833-839.
- [41]Chalasani KB, Russell-Jones GJ, Jain AK, Diwan PV, Jain SK. Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. J Control Release. 2007; 122(2):141-150.
- [42]Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm. 2000; 50(1):147-160.
- [43]Florence AT. The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm Res. 1997; 14(3):259-266.
- [44]Guo M, Rong WT, Hou J, Wang DF, Lu Y, Wang Y et al.. Mechanisms of chitosan-coated poly(lactic-co-glycolic acid) nanoparticles for improving oral absorption of 7-ethyl-10-hydroxycamptothecin. Nanotechnology. 2013; 24(24):245101.
- [45]Damge C, Reis CP, Maincent P. Nanoparticle strategies for the oral delivery of insulin. Expert Opin Drug Deliv. 2008; 5(1):45-68.
- [46]Sajeesh S, Sharma CP. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int J Pharm. 2006; 325(1–2):147-154.
- [47]Cui FD, Tao AJ, Cun DM, Zhang LQ, Shi K. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. J Pharm Sci. 2007; 96(2):421-427.
- [48]Reis CP, Ribeiro AJ, Houng S, Veiga F, Neufeld RJ. Nanoparticulate delivery system for insulin: design, characterization and in vitro/in vivo bioactivity. Eur J Pharm Sci. 2007; 30(5):392-397.
- [49]Sonaje K, Lin YH, Juang JH, Wey SP, Chen CT, Sung HW. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials. 2009; 30(12):2329-2339.
- [50]Ballard ST, Hunter JH, Taylor AE. Regulation of tight-junction permeability during nutrient absorption across the intestinal epithelium. Annu Rev Nutr. 1995; 15:35-55.
- [51]Cereijido M, Shoshani L, Contreras RG. Molecular physiology and pathophysiology of tight junctions. I. Biogenesis of tight junctions and epithelial polarity. Am J Physiol Gastrointest Liver Physiol. 2000; 279(3):G477-G482.
- [52]Yamamoto T, Harada N, Kano K, Taya S, Canaani E, Matsuura Y et al.. The Ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J Cell Biol. 1997; 139(3):785-795.
- [53]Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol. 1994; 127(6 Pt 1):1617-1626.
- [54]Ward PD, Tippin TK, Thakker DR. Enhancing paracellular permeability by modulating epithelial tight junctions. Pharm Sci Technolo Today. 2000;3(10):346–358 ([pii]: S1461534700003023).
- [55]Jin J, Song M, Hourston DJ. Novel chitosan-based films cross-linked by genipin with improved physical properties. Biomacromolecules. 2004; 5(1):162-168.
- [56]Roy K, Mao HQ, Huang SK, Leong KW. Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med. 1999; 5(4):387-391.
- [57]Ding Y, Xia XH, Zhang C. Synthesis of metallic nanoparticles protected with N, N, N-trimethyl chitosan chloride via a relatively weak affinity. Nanotechnology. 2006; 17(16):4156-4162.
- [58]Prego C, Fabre M, Torres D, Alonso MJ. Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery. Pharm Res. 2006; 23(3):549-556.
- [59]Pan Y, Li YJ, Zhao HY, Zheng JM, Xu H, Wei G, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm. 2002;249(1–2):139–347 ([pii]: S0378517302004866).
- [60]Takeuchi H, Thongborisute J, Matsui Y, Sugihara H, Yamamoto H, Kawashima Y. Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems. Adv Drug Deliv Rev. 2005; 57(11):1583-1594.
- [61]Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2001; 2(4):285-293.
- [62]Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004; 100(1):5-28.
- [63]Prego C, Garcia M, Torres D, Alonso MJ. Transmucosal macromolecular drug delivery. J Control Release. 2005; 101(1–3):151-162.
- [64]Ma Z, Lim TM, Lim LY. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. Int J Pharm. 2005; 293(1–2):271-280.
- [65]Lin YH, Chen CT, Liang HF, Kulkarni AR, Lee PW, Singara Chen CH, Sung HW. Novel nanoparticles for oral insulin delivery via the paracellular pathway. Nanotechnol. 2007;18.
- [66]Sung HW, Sonaje K, Liao ZX, Hsu LW, Chuang EY. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Acc Chem Res. 2012; 45(4):619-629.
- [67]Mao S, Bakowsky U, Jintapattanakit A, Kissel T. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin. J Pharm Sci. 2006; 95(5):1035-1048.
- [68]Fernandez-Urrusuno R, Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res. 1999; 16(10):1576-1581.
- [69]Nam J-P, Choi C, Jang M-K, Jeong Y-I, Nah J-W, Kim S-H et al.. Insulin-incorporated chitosan nanoparticles based on polyelectrolyte complex formation. Macromol Res. 2010; 18(7):630-635.
- [70]Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF et al.. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules. 2007; 8(1):146-152.
- [71]Sarmento B, Martins S, Ribeiro A, Veiga F, Neufeld R, Ferreira D. Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers. Int J Pept Res Ther. 2006; 12(2):131-138.
- [72]Jelvehgari M, Zakeri-Milani P, Siahi-Shadbad MR, Loveymi BD, Nokhodchi A, Azari Z et al.. Development of pH-sensitive insulin nanoparticles using Eudragit L100-55 and chitosan with different molecular weights. AAPS PharmSciTech. 2010; 11(3):1237-1242.
- [73]Finotelli PV, Da Silva D, Sola-Penna M, Rossi AM, Farina M, Andrade LR et al.. Microcapsules of alginate/chitosan containing magnetic nanoparticles for controlled release of insulin. Colloids Surf B. 2010; 81(1):206-211.
- [74]Li X, Qi J, Xie Y, Zhang X, Hu S, Xu Y et al.. Nanoemulsions coated with alginate/chitosan as oral insulin delivery systems: preparation, characterization, and hypoglycemic effect in rats. Int J Nanomed. 2013; 8:23-32.
- [75]Cilek A, Celebi N, Tirnaksiz F, Tay A. A lecithin-based microemulsion of rh-insulin with aprotinin for oral administration: investigation of hypoglycemic effects in non-diabetic and STZ-induced diabetic rats. Int J Pharm. 2005; 298(1):176-185.
- [76]Elsayed A, Remawi MA, Qinna N, Farouk A, Badwan A. Formulation and characterization of an oily-based system for oral delivery of insulin. Eur J Pharm Biopharm. 2009; 73(2):269-279.
- [77]Cui F, Qian F, Zhao Z, Yin L, Tang C, Yin C. Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles. Biomacromolecules. 2009; 10(5):1253-1258.
- [78]Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R. Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules. 2007; 8(10):3054-3060.
- [79]Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res. 2007; 24(12):2198-2206.
- [80]Lassalle V, Ferreira ML. PLGA based drug delivery systems (DDS) for the sustained release of insulin: insight into the protein/polyester interactions and the insulin release behavior. J Chem Technol Biotechnol. 2010; 85(12):1588-1596.
- [81]Santander-Ortega MJ, Bastos-Gonzalez D, Ortega-Vinuesa JL, Alonso MJ. Insulin-loaded PLGA nanoparticles for oral administration: an in vitro physico-chemical characterization. J Biomed Nanotechnol. 2009; 5(1):45-53.
- [82]Cui F, Shi K, Zhang L, Tao A, Kawashima Y. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Control Release. 2006; 114(2):242-250.
- [83]Han Y, Tian H, He P, Chen X, Jing X. Insulin nanoparticle preparation and encapsulation into poly(lactic-co-glycolic acid) microspheres by using an anhydrous system. Int J Pharm. 2009; 378(1–2):159-166.
- [84]Liu J, Zhang SM, Chen PP, Cheng L, Zhou W, Tang WX et al.. Controlled release of insulin from PLGA nanoparticles embedded within PVA hydrogels. J Mater Sci Mater Med. 2007; 18(11):2205-2210.
- [85]Tahara K, Sakai T, Yamamoto H, Takeuchi H, Hirashima N, Kawashima Y. Improved cellular uptake of chitosan-modified PLGA nanospheres by A549 cells. Int J Pharm. 2009; 382(1–2):198-204.
- [86]Bansal T, Jaggi M, Khar RK, Talegaonkar S. Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. J Pharm Pharm Sci. 2009; 12(1):46-78.
- [87]Zhang X, Sun M, Zheng A, Cao D, Bi Y, Sun J. Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration. Eur J Pharm Sci. 2012; 45(5):632-638.
- [88]Sun S, Liang N, Piao H, Yamamoto H, Kawashima Y, Cui F. Insulin-S.O (sodium oleate) complex-loaded PLGA nanoparticles: formulation, characterization and in vivo evaluation. J Microencapsul. 2010; 27(6):471-478.
- [89]Davaran S, Omidi Y, Rashidi Mohammad Reza, Anzabi M, Shayanfar A, Ghyasvand S et al.. Preparation and in vitro Evaluation of Linear and Star-branched PLGA Nanoparticles for Insulin Delivery. J Bioactive Compat Polym. 2008; 23(2):115-131.
- [90]Jain S, Rathi VV, Jain AK, Das M, Godugu C. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine. 2012; 7(9):1311-1337.
- [91]Brownlee M, Cerami A. A glucose-controlled insulin-delivery system: semisynthetic insulin bound to lectin. Science. 1979; 206(4423):1190-1191.
- [92]Miyata T, Uragami T, Nakamae K. Biomolecule-sensitive hydrogels. Adv Drug Deliv Rev. 2002; 54(1):79-98.
- [93]Kost J, Langer R. Responsive polymeric delivery systems. Adv Drug Deliv Rev. 2001; 46(1–3):125-148.
- [94]Obaidat AA, Park K. Characterization of protein release through glucose-sensitive hydrogel membranes. Biomaterials. 1997; 18(11):801-806.
- [95]Tanna S, Sahota T, Clark J, Taylor MJ. A covalently stabilised glucose responsive gel formulation with a Carbopol ® carrier. J Drug Target. 2002; 10(5):411-418.
- [96]Zion TC. Glucose-sensitive nanoparticles for controlled insulin delivery. 2003.
- [97]Sluzky V, Tamada JA, Klibanov AM, Langer R. Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces. Proc Natl Acad Sci USA. 1991; 88(21):9377-9381.
- [98]Tiyaboonchai W, Woiszwillo J, Sims RC, Middaugh CR. Insulin containing polyethylenimine–dextran sulfate nanoparticles. Int J Pharm. 2003; 255(1–2):139-151.
- [99]Russell-Jones GJ. Use of targeting agents to increase uptake and localization of drugs to the intestinal epithelium. J Drug Target. 2004; 12(2):113-123.
- [100]Russell-Jones GJ, Westwood SW, Farnworth PG, Findlay JK, Burger HG. Synthesis of LHRH antagonists suitable for oral administration via the vitamin B12 uptake system. Bioconjug Chem. 1995; 6(1):34-42.
- [101]Russell-Jones GJ, Westwood SW, Habberfield AD. Vitamin B12 mediated oral delivery systems for granulocyte-colony stimulating factor and erythropoietin. Bioconjug Chem. 1995; 6(4):459-465.
- [102]Chalasani KB, Russell-Jones GJ, Yandrapu SK, Diwan PV, Jain SK. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release. 2007; 117(3):421-429.
- [103]Woitiski CB, Neufeld RJ, Veiga F, Carvalho RA, Figueiredo IV. Pharmacological effect of orally delivered insulin facilitated by multilayered stable nanoparticles. Eur J Pharm Sci. 2010; 41(3–4):556-563.
- [104]Reis CP, Veiga FJ, Ribeiro AJ, Neufeld RJ, Damge C. Nanoparticulate biopolymers deliver insulin orally eliciting pharmacological response. J Pharm Sci. 2008; 97(12):5290-5305.
- [105]Woodward SC, Herrmann JB, Cameron JL, Brandes G, Pulaski EJ, Leonard F. Histotoxicity of cyanoacrylate tissue adhesive in the rat. Ann Surg. 1965; 162:113-122.
- [106]Lenaerts V, Couvreur P, Christiaens-Leyh D, Joiris E, Roland M, Rollman B et al.. Degradation of poly (isobutyl cyanoacrylate) nanoparticles. Biomaterials. 1984; 5(2):65-68.
- [107]Damge C, Michel C, Aprahamian M, Couvreur P. New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes. 1988; 37(2):246-251.
- [108]Kafka AP, Kleffmann T, Rades T, McDowell A. Characterization of peptide polymer interactions in poly(alkylcyanoacrylate) nanoparticles: a mass spectrometric approach. Curr Drug Deliv. 2010. ([pii]: BSP-CDD-EPUB-00042) .
- [109]Graf A, Rades T, Hook SM. Oral insulin delivery using nanoparticles based on microemulsions with different structure-types: optimisation and in vivo evaluation. Eur J Pharm Sci. 2009; 37(1):53-61.
- [110]Hou ZQ, Zhang ZX, Xu ZH, Zhang H, Tong ZF, Leng YS. The stability of insulin-loaded polybutylcyanoacrylate nanoparticles in an oily medium and the hypoglycemic effect in diabetic rats. Yao Xue Xue Bao. 2005; 40(1):57-64.
- [111]Müller RH, Rühl D, Runge SA. Biodegradation of solid lipid nanoparticles as a function of lipase incubation time. Int J Pharm. 1996; 144(1):115-121.
- [112]Rawat M, Singh D, Saraf S. Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull. 2006;29(9):1790–1798. ([pii]: JST.JSTAGE/bpb/29.1790).
- [113]Garcia-Fuentes M, Prego C, Torres D, Alonso MJ. A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly(ethylene glycol) as carriers for oral calcitonin delivery. Eur J Pharm Sci. 2005; 25(1):133-143.
- [114]Müller RH, Maaβen S, Weyhers H, Specht F, Lucks JS. Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles. Int J Pharm. 1996; 138(1):85-94.
- [115]Sarmento B, Martins S, Ferreira D, Souto EB. Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomedicine. 2007; 2(4):743-749.
- [116]Muller RH, Runge S, Ravelli V, Mehnert W, Thunemann AF, Souto EB. Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN) versus drug nanocrystals. Int J Pharm. 2006; 317(1):82-89.
- [117]Zhang N, Ping Q, Huang G, Xu W, Cheng Y, Han X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int J Pharm. 2006; 327(1–2):153-159.
- [118]Liu J, Gong T, Wang C, Zhong Z, Zhang Z. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. Int J Pharm. 2007; 340(1–2):153-162.
- [119]Zhang Z, Lv H, Zhou J. Novel solid lipid nanoparticles as carriers for oral administration of insulin. Pharmazie. 2009; 64(9):574-578.
- [120]Zhang ZH, Zhang YL, Zhou JP, Lv HX. Solid lipid nanoparticles modified with stearic acid-octaarginine for oral administration of insulin. Int J Nanomedicine. 2012; 7:3333-3339.
- [121]Sarmento B, Mazzaglia D, Bonferoni MC, Neto AP, do Céu Monteiro M, Seabra V. Effect of chitosan coating in overcoming the phagocytosis of insulin loaded solid lipid nanoparticles by mononuclear phagocyte system. Carbohydr Polym. 2011;84(3):919–25. doi:10.1016/j.carbpol.2010.12.042.
- [122]Fonte P, Nogueira T, Gehm C, Ferreira D, Sarmento B. Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Deliv Transl Res. 2011; 1(4):299-308.
- [123]Yang R, Gao R, Li F, He H, Tang X. The influence of lipid characteristics on the formation, in vitro release, and in vivo absorption of protein-loaded SLN prepared by the double emulsion process. Drug Dev Ind Pharm. 2011; 37(2):139-148.
- [124]Yang X, Liu Y, Liu C, Zhang N. Biodegradable solid lipid nanoparticle flocculates for pulmonary delivery of insulin. J Biomed Nanotechnol. 2012; 8(5):834-842.
- [125]Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest. 2002; 109(5):571-577.
- [126]Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009; 61(2):158-171.
- [127]Kang SK, Woo JH, Kim MK, Woo SS, Choi JH, Lee HG et al.. Identification of a peptide sequence that improves transport of macromolecules across the intestinal mucosal barrier targeting goblet cells. J Biotechnol. 2008; 135(2):210-216.
- [128]Pridgen EM, Alexis F, Kuo TT, Levy-Nissenbaum E, Karnik R, Blumberg RS et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal Fc receptor for oral delivery. Sci Transl Med. 2013;5(213):213ra167–213ra167. doi:10.1126/scitranslmed.3007049.