Gut Pathogens | |
Understanding the sequential activation of Type III and Type VI Secretion Systems in Salmonella typhimurium using Boolean modeling | |
Sharmila S Mande1  Hannah Rajasingh2  Anirban Dutta1  Chandrani Das1  | |
[1] Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services Ltd., 54-B, Hadapsar Industrial Estate, Pune 411013, Maharashtra, India;Present address: Novartis Healthcare Pvt. Ltd., #6 Raheja Mindspace, Hitec-city, Hyderabad 500081, India | |
关键词: Cross-talk network; Boolean modeling; Type VI Secretion System (T6SS); SPI-2; Salmonella pathogenicity island 1 (SPI-1); Salmonella typhimurium; | |
Others : 821016 DOI : 10.1186/1757-4749-5-28 |
|
received in 2013-07-16, accepted in 2013-09-14, 发布年份 2013 | |
【 摘 要 】
Background
Three pathogenicity islands, viz. SPI-1 (Salmonella pathogenicity island 1), SPI-2 (Salmonella pathogenicity island 2) and T6SS (Type VI Secretion System), present in the genome of Salmonella typhimurium have been implicated in the virulence of the pathogen. While the regulation of SPI-1 and SPI-2 (both encoding components of the Type III Secretion System - T3SS) are well understood, T6SS regulation is comparatively less studied. Interestingly, inter-connections among the regulatory elements of these three virulence determinants have also been suggested to be essential for successful infection. However, till date, an integrated view of gene regulation involving the regulators of these three secretion systems and their cross-talk is not available.
Results
In the current study, relevant regulatory information available from literature have been integrated into a single Boolean network, which portrays the dynamics of T3SS (SPI-1 and SPI-2) and T6SS mediated virulence. Some additional regulatory interactions involving a two-component system response regulator YfhA have also been predicted and included in the Boolean network. These predictions are aimed at deciphering the effects of osmolarity on T6SS regulation, an aspect that has been suggested in earlier studies, but the mechanism of which was hitherto unknown. Simulation of the regulatory network was able to recreate in silico the experimentally observed sequential activation of SPI-1, SPI-2 and T6SS.
Conclusions
The present study integrates relevant gene regulatory data (from literature and our prediction) into a single network, representing the cross-communication between T3SS (SPI-1 and SPI-2) and T6SS. This holistic view of regulatory interactions is expected to improve the current understanding of pathogenesis of S. typhimurium.
【 授权许可】
2013 Das et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140712063121578.pdf | 1614KB | download | |
Figure 3. | 114KB | Image | download |
Figure 2. | 111KB | Image | download |
Figure 1. | 134KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Lucas RL, Lee CA: Unravelling the mysteries of virulence gene regulation in Salmonella typhimurium. Mol Microbiol 2000, 36:1024-1033.
- [2]Marcus SL, Brumell JH, Pfeifer CG, Finlay BB: Salmonella pathogenicity islands: big virulence in small packages. Microbes Infect 2000, 2:145-156.
- [3]Cirillo DM, Valdivia RH, Monack DM, Falkow S: Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol 1998, 30:175-188.
- [4]Hensel M: Salmonella pathogenicity island 2. Mol Microbiol 2000, 36:1015-1023.
- [5]Bustamante VH, Martínez LC, Santana FJ, Knodler LA, Steele-Mortimer O, Puente JL: HilD-mediated transcriptional cross-talk between SPI-1 and SPI-2. Proc Natl Acad Sci USA 2008, 105:14591-14596.
- [6]Martínez LC, Yakhnin H, Camacho MI, Georgellis D, Babitzke P, Puente JL, Bustamante VH: Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD. Mol Microbiol 2011, 80:1637-1656.
- [7]Leung KY, Siame BA, Snowball H, Mok Y-K: Type VI secretion regulation: crosstalk and intracellular communication. Curr Opin Microbiol 2011, 14:9-15.
- [8]Bernard CS, Brunet YR, Gueguen E, Cascales E: Nooks and crannies in type VI secretion regulation. J Bacteriol 2010, 192:3850-3860.
- [9]Parsons DA, Heffron F: sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun 2005, 73:4338-4345.
- [10]Altier C, Suyemoto M, Lawhon SD: Regulation of Salmonella enterica serovar typhimurium invasion genes by csrA. Infect Immun 2000, 68:6790-6797.
- [11]Ellermeier CD, Ellermeier JR, Slauch JM: HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium. Mol Microbiol 2005, 57:691-705.
- [12]Ganesh AB, Rajasingh H, Mande SS: Mathematical modeling of regulation of type III secretion system in Salmonella enterica serovar Typhimurium by SirA. In Silico Biol (Gedrukt) 2009, 9:S57-S72.
- [13]Fass E, Groisman EA: Control of Salmonella pathogenicity island-2 gene expression. Curr Opin Microbiol 2009, 12:199-204.
- [14]Teixidó L, Carrasco B, Alonso JC, Barbé J, Campoy S: Fur activates the expression of Salmonella enterica pathogenicity island 1 by directly interacting with the hilD operator in vivo and in vitro. PLoS One 2011, 6:e19711.
- [15]Soncini FC, Groisman EA: Two-component regulatory systems can interact to process multiple environmental signals. J Bacteriol 1996, 178:6796-6801.
- [16]García-Calderón CB, Casadesús J, Ramos-Morales F: Regulation of igaA and the Rcs system by the MviA response regulator in Salmonella enterica. J Bacteriol 2009, 191:2743-2752.
- [17]Majdalani N, Gottesman S: The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 2005, 59:379-405.
- [18]Wang Q, Zhao Y, McClelland M, Harshey RM: The RcsCDB signaling system and swarming motility in Salmonella enterica serovar typhimurium: dual regulation of flagellar and SPI-2 virulence genes. J Bacteriol 2007, 189:8447-8457.
- [19]Albert R: Boolean modeling of genetic regulatory networks. In Complex networks. Edited by Ben-Naim E, Frauenfelder H, Toroczkai Z. Berlin Heidelberg: Springer; 2004:459-481. Lecture Notes in Physics, vol. 650
- [20]Bornholdt S: Boolean network models of cellular regulation: prospects and limitations. J R Soc Interface 2008, 5(Suppl 1):S85-S94.
- [21]Li F, Long T, Lu Y, Ouyang Q, Tang C: The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci USA 2004, 101:4781-4786.
- [22]Fauré A, Naldi A, Chaouiya C, Thieffry D: Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 2006, 22:e124-e131.
- [23]Thakar J, Pilione M, Kirimanjeswara G, Harvill ET, Albert R: Modeling systems-level regulation of host immune responses. PLoS Comput Biol 2007, 3:e109.
- [24]Giacomantonio CE, Goodhill GJ: A Boolean model of the gene regulatory network underlying Mammalian cortical area development. PLoS Comput Biol 2010, 6:e1000936.
- [25]Hegde SR, Rajasingh H, Das C, Mande SS, Mande SC: Understanding communication signals during mycobacterial latency through predicted genome-wide protein interactions and boolean modeling. PLoS ONE 2012, 7:e33893.
- [26]Garmendia J, Beuzón CR, Ruiz-Albert J, Holden DW: The roles of SsrA-SsrB and OmpR-EnvZ in the regulation of genes encoding the Salmonella typhimurium SPI-2 type III secretion system. Microbiology 2003, 149(Pt 9):2385-2396.
- [27]Yamamoto K, Hirao K, Oshima T, Aiba H, Utsumi R, Ishihama A: Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 2005, 280:1448-1456.
- [28]Reichenbach B, Göpel Y, Görke B: Dual control by perfectly overlapping sigma 54- and sigma 70- promoters adjusts small RNA GlmY expression to different environmental signals. Mol Microbiol 2009, 74:1054-1070.
- [29]Correa NE, Klose KE: Characterization of enhancer binding by the Vibrio cholerae flagellar regulatory protein FlrC. J Bacteriol 2005, 187:3158-3170.
- [30]Syed KA, Beyhan S, Correa N, Queen J, Liu J, Peng F, Satchell KJF, Yildiz F, Klose KE: The vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J Bacteriol 2009, 191:6555-6570.
- [31]Saini S, Slauch JM, Aldridge PD, Rao CV: Role of cross talk in regulating the dynamic expression of the flagellar Salmonella pathogenicity island 1 and type 1 fimbrial genes. J Bacteriol 2010, 192:5767-5777.
- [32]Levitt M: Accurate modeling of protein conformation by automatic segment matching. J Mol Biol 1992, 226:507-533.
- [33]Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz H-R, Ceric G, Forslund K, Eddy SR, Sonnhammer ELL, Bateman A: The Pfam protein families database. Nucleic Acids Res 2008, 36(Database issue):D281-D288.
- [34]Feng X, Oropeza R, Kenney LJ: Dual regulation by phospho-OmpR of ssrA/B gene expression in Salmonella pathogenicity island 2. Mol Microbiol 2003, 48:1131-1143.
- [35]Gonzalez AG, Naldi A, Sánchez L, Thieffry D, Chaouiya C: GINsim: a software suite for the qualitative modelling, simulation and analysis of regulatory networks. Biosystems 2006, 84:91-100.
- [36]Wang M, Luo Z, Du H, Xu S, Ni B, Zhang H, Sheng X, Xu H, Huang X: Molecular characterization of a functional type VI secretion system in Salmonella enterica serovar Typhi. Curr Microbiol 2011, 63:22-31.
- [37]Bijlsma JJE, Groisman EA: The PhoP/PhoQ system controls the intramacrophage type three secretion system of Salmonella enterica. Mol Microbiol 2005, 57:85-96.
- [38]Le D-H, Kwon Y-K: A coherent feedforward loop design principle to sustain robustness of biological networks. Bioinformatics 2013, 29:630-637.
- [39]Mao F, Dam P, Chou J, Olman V, Xu Y: DOOR: a database for prokaryotic operons. Nucleic Acids Res 2009, 37(Database issue):D459-D463.
- [40]Ghosh D: Object-oriented transcription factors database (ooTFD). Nucleic Acids Res 2000, 28:308-310.
- [41]Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 2003, 31:3381-3385.
- [42]Zhu J, Weng Z: FAST: a novel protein structure alignment algorithm. Proteins 2005, 58:618-627.
- [43]Ellermeier JR, Slauch JM: Fur regulates expression of the Salmonella pathogenicity island 1 type III secretion system through HilD. J Bacteriol 2008, 190:476-486.
- [44]Mizusaki H, Takaya A, Yamamoto T, Aizawa S: Signal pathway in salt-activated expression of the Salmonella pathogenicity island 1 type III secretion system in Salmonella enterica serovar Typhimurium. J Bacteriol 2008, 190:4624-4631.
- [45]Queiroz MH, Madrid C, Paytubi S, Balsalobre C, Juárez A: Integration host factor alleviates H-NS silencing of the Salmonella enterica serovar Typhimurium master regulator of SPI1, hilA. Microbiology 2011, 157(Pt 9):2504-2514.
- [46]Lim S, Yun J, Yoon H, Park C, Kim B, Jeon B, Kim D, Ryu S: Mlc regulation of Salmonella pathogenicity island I gene expression via hilE repression. Nucleic Acids Res 2007, 35:1822-1832.
- [47]Bowden SD, Rowley G, Hinton JCD, Thompson A: Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar typhimurium. Infect Immun 2009, 77:3117-3126.
- [48]Miao EA, Miller SI: A conserved amino acid sequence directing intracellular type III secretion by Salmonella typhimurium. Proc Natl Acad Sci USA 2000, 97:7539-7544.
- [49]Lee AK, Detweiler CS, Falkow S: OmpR regulates the two-component system SsrA-ssrB in Salmonella pathogenicity island 2. J Bacteriol 2000, 182:771-781.
- [50]Linehan SA, Rytkönen A, Yu X-J, Liu M, Holden DW: SlyA regulates function of Salmonella pathogenicity island 2 (SPI-2) and expression of SPI-2-associated genes. Infect Immun 2005, 73:4354-4362.
- [51]Mair SM, Nairz M, Bellmann-Weiler R, Muehlbacher T, Schroll A, Theurl I, Moser PL, Talasz H, Fang FC, Weiss G: Nifedipine affects the course of Salmonella enterica serovar Typhimurium infection by modulating macrophage iron homeostasis. J Infect Dis 2011, 204:685-694.
- [52]Ibarra JA, Knodler LA, Sturdevant DE, Virtaneva K, Carmody AB, Fischer ER, Porcella SF, Steele-Mortimer O: Induction of Salmonella pathogenicity island 1 under different growth conditions can affect Salmonella-host cell interactions in vitro. Microbiology 2010, 156(Pt 4):1120-1133.
- [53]Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JCD: Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 2003, 47:103-118.
- [54]Craig M, Slauch JM: Phagocytic Superoxide Specifically Damages an Extracytoplasmic Target to Inhibit or Kill Salmonella. PLoS One 2009, 4:e4975.
- [55]Gallois A, Klein JR, Allen LA, Jones BD, Nauseef WM: Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane. J Immunol 2001, 166:5741-5748.
- [56]Albert I, Thakar J, Li S, Zhang R, Albert R: Boolean network simulations for life scientists. Source Code Biol Med 2008, 3:16. BioMed Central Full Text