期刊论文详细信息
Genome Biology
The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage
Richard K Wilson2,22  Elaine R Mardis2,22  Wesley C Warren2,22  Laura M Zimmerman6  Tomas Vinar2,23  Nay Thane2,22  Kenneth B Storey4  Phillip Q Spinks1,12  Arun Sethuraman1,10  Tonia Schwartz1,10  John St John2,20  Joy M Richman9  Brian J Raney1,11  Srihari Radhakrishnan1,10  Chris P Ponting1,18  David D Pollock2  Ryan T Paitz6  Michelle O'Laughlin2,22  Lindsey Mork2,26  Suzanne E McGaugh1,16  Robert Literman1,10  Yang Li1,18  AP Jason de Koning2  Lesheng Kong1,18  Cyriac Kandoth2,22  Fredric J Janzen1,10  Daniel Janes1,10  Alisha K Holloway1,19  LaDeana W Hillier2,22  Omar Hernandez7  Ramkumar Hariharan1,17  Wilfried Haerty1,18  Richard E Green2,20  Tina A Graves2,22  Lucinda Fulton2,22  Matthew K Fujita2,25  Catrina C Fronick2,22  Scott V Edwards1  Kim D Delehaunty2,22  Mike Czerwinski2,26  Todd A Castoe1,15  Blanche Capel2,26  Leslie T Buck2,28  Benoit G Bruneau1,14  Anne M Bronikowski1,10  Edward L Braun1,13  Rachel M Bowden6  Christopher W Botka3  Glen M Borchert5  Kyle K Biggar4  Daleen Badenhorst1,10  Chris T Amemiya2,27  John Abramyan9  Nicole Valenzuela1,10  Robert C Thomson2,21  Andrew M Shedlock8  Daniel E Warren2,24  Patrick Minx2,22  H Bradley Shaffer1,12 
[1] Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA;Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA;Research Computing, Harvard Medical School, Boston, MA 02115, USA;Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada K1S 5B6, Canada;Department of Biological Sciences, Life Sciences Building, University of South Alabama, Mobile, AL 36688-0002, USA;School of Biological Sciences, Illinois State University, Normal, IL 61790, USA;FUDECI, Fundación para el Desarrollo de las Ciencias Físicas, Matemáticas y Naturales. Av, Universidad, Bolsa a San Francisco, Palacio de Las Academias, Caracas, Venezuela;Medical University of South Carolina College of Graduate Studies and Center for Marine Biomedicine and Environmental Sciences, Charleston, SC 29412, USA;Faculty of Dentistry, Life Sciences Institute University of British Columbia, Vancouver BC, Canada;Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA;Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, CA 95064, USA;La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-1496, USA;Department of Biology, University of Florida, Gainesville, FL 32611 USA;Cardiovascular Research Institute and Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA;Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA;Biology Department, Duke University, Durham, NC 27708, US;Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojapura, Thycaud P.O, Thiruvananthapuram, Kerala 695014, India;MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, Henry Wellcome Building of Gene Function, University of Oxford, Oxford, OX13PT, UK;Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA;Baskin School of Engineering University of California, Santa Cruz Santa Cruz, CA 95064, USA;Department of Biology, University of Hawaii at Manoa, Honolulu, HI 96822, USA;The Genome Institute, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, MO 63108, USA;Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina, Bratislava 84248, Slovakia;Department of Biology, Saint Louis University, St Louis, MO 63103, USA;Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA;Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA;Benaroya Research Institute at Virginia Mason, Seattle, WA 98101 USA;Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5, Canada
关键词: evolutionary rates;    turtle;    physiology;    phylogenomics;    longevity;    genomics;    freeze tolerance;    chelonian;    anoxia tolerance;    Amniote phylogeny;   
Others  :  866871
DOI  :  10.1186/gb-2013-14-3-r28
 received in 2012-10-18, accepted in 2013-03-28,  发布年份 2013
PDF
【 摘 要 】

Background

We describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context, and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and determination, and the species' physiological capacities to withstand extreme anoxia and tissue freezing.

Results

Our phylogenetic analyses confirm that turtles are the sister group to living archosaurs, and demonstrate an extraordinarily slow rate of sequence evolution in the painted turtle. The ability of the painted turtle to withstand complete anoxia and partial freezing appears to be associated with common vertebrate gene networks, and we identify candidate genes for future functional analyses. Tooth loss shares a common pattern of pseudogenization and degradation of tooth-specific genes with birds, although the rate of accumulation of mutations is much slower in the painted turtle. Genes associated with sex differentiation generally reflect phylogeny rather than convergence in sex determination functionality. Among gene families that demonstrate exceptional expansions or show signatures of strong natural selection, immune function and musculoskeletal patterning genes are consistently over-represented.

Conclusions

Our comparative genomic analyses indicate that common vertebrate regulatory networks, some of which have analogs in human diseases, are often involved in the western painted turtle's extraordinary physiological capacities. As these regulatory pathways are analyzed at the functional level, the painted turtle may offer important insights into the management of a number of human health disorders.

【 授权许可】

   
2013 Shaffer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140728062710251.pdf 3082KB PDF download
51KB Image download
Figure 2. 102KB Image download
110KB Image download
50KB Image download
20KB Image download
36KB Image download
【 图 表 】

Figure 2.

【 参考文献 】
  • [1]Romer AS: Vertebrate paleontology. 3rd edition. Chicago, IL: University of Chicago Press; 1967.
  • [2]Li C, Wu X-C, Rieppel O, Wang L-T, Zhao L-J: An ancestral turtle from the Late Triassic of southwestern China. Nature 2008, 456:497-501.
  • [3]Gaffney ES, Jenkins FA: The cranial morphology of Kayentachelys, an Early Jurassic cryptodire, and the early history of turtles. Acta Zoologica 2010, 91:335-368.
  • [4]Ultsch GR, Jackson DC: Long-term submergence at 3-degrees-C of the turtle, Chrysemys picta bellii, in normoxic and severely hypoxic water. 1. Survival, gas-exchange and acid-base status. J Exp Biol 1982, 96:11-28.
  • [5]Johlin JM, Moreland FB: Studies of the blood picture of the turtle after complete anoxia. J Biol Chem 1933, 103:107-114.
  • [6]Storey KB, Storey JM, Brooks SPJ, Churchill TA, Brooks RJ: Hatchling turtles survive freezing during winter hibernation. Proc Natl Acad Sci USA 1988, 85:8350-8354.
  • [7]Keenan NL, Shaw KM: Coronary heart disease and stroke deaths - United States, 2006. Morb Mortal Weekly Rep 2011, 60:62-66.
  • [8]Smit AFA, Hubley R, Green P: RepeatMasker Open-3.0. 1996.
  • [9]Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, Russell P, Lowe CB, Glor RE, Jaffe JD, Ray DA, Boissinot S, Shedlock AM, Botka C, Castoe TA, Colbourne JK, Fujita MK, Moreno RG, ten Hallers BF, Haussler D, Heger A, Heiman D, Janes DE, Johnson J, de Jong PJ, Koriabine MY, Lara M, Novick PA, Organ CL, Peach SE, et al.: The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 2011, 477:587-591.
  • [10]Heger A, Ponting CP: Evolutionary rate analyses of orthologs and paralogs from 12 Drosophila genomes. Genome Res 2007, 17:1837-1849.
  • [11]Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A, Searle S, White S, Vilella AJ, Fairley S, Heger A, Kong LS, Ponting CP, Jarvis ED, Mello CV, Minx P, Lovell P, Velho TAF, Ferris M, Balakrishnan CN, Sinha S, Blatti C, London SE, Li Y, Lin YC, George J, Sweedler J, Southey B, Gunaratne P, Watson M, et al.: The genome of a songbird. Nature 2010, 464:757-762.
  • [12]Gilbert C, Hernandez SS, Flores-Benabib J, Smith EN, Feschotte C: Rampant horizontal transfer of SPIN transposons in squamate reptiles. Mol Biol Evol 2012, 29:503-515.
  • [13]Shedlock AM, Botka CW, Zhao SY, Shetty J, Zhang TT, Liu JS, Deschavanne PJ, Edward SV: Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genorne. Proc Natl Acad Sci USA 2007, 104:2767-2772.
  • [14]Feschotte C: Opinion - Transposable elements and the evolution of regulatory networks. Nat Rev Genet 2008, 9:397-405.
  • [15]Janes DE, Organ CL, Fujita MK, Shedlock AM, Edwards SV: Genome Evolution in Reptilia, the Sister Group of Mammals. Annual Review of Genomics and Human Genetics Chakravarti A, Green E edition. 2010, 11:239-264.
  • [16]Kazazian HH: Mobile elements: Drivers of genome evolution. Science 2004, 303:1626-1632.
  • [17]Shedlock AM: Phylogenomic investigation of CR1 LINE diversity in reptiles. Syst Biol 2006, 55:902-911.
  • [18]Fujita MK, Edwards SV, Ponting CP: The Anolis lizard genome: an amniote genome without isochores. Genome Biol Evol 2011, 3:974-984.
  • [19]Galtier N, Gouy M: Inferring pattern and process: Maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Mol Biol Evol 1998, 15:871-879.
  • [20]Crawford NG, Faircloth BC, McCormack JE, Brumfield RT, Winker K, Glenn TC: More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biol Lett 2012, 8:783-786.
  • [21]Lyson TR, Sperling EA, Heimberg AM, Gauthier JA, King BL, Peterson KJ: MicroRNAs support a turtle plus lizard clade. Biol Lett 2012, 8:104-107.
  • [22]Chiari Y, Cahais V, Galtier N, Delsuc F: Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol 2012, 10:65. BioMed Central Full Text
  • [23]Bromham L: Molecular clocks in reptiles: Life history influences rate of molecular evolution. Mol Biol Evol 2002, 19:302-309.
  • [24]Sayres MAW, Venditti C, Pagel M, Makova KD: Do variations in substitution rates and male mutation bias correlate with life-history traits? A study of 32 mammalian genomes. Evolution 2011, 65:2800-2815.
  • [25]Regard JB, Scheek S, Borbiev T, Lanahan AA, Schneider A, Demetriades AM, Hiemisch H, Barnes CA, Verin AD, Worley PF: Verge: A novel vascular early response gene. J Neurosci 2004, 24:4092-4103.
  • [26]van Dam H, Castellazzi M: Distinct roles of Jun: Fos and Jun: ATF dimers in oncogenesis. Oncogene 2001, 20:2453-2464.
  • [27]Passegue E, Wagner EF: JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. EMBO J 2000, 19:2969-2979.
  • [28]Winkler GS: The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol 2010, 222:66-72.
  • [29]Levin WJ, Press MF, Gaynor RB, Sukhatme VP, Boone TC, Reissmann PT, Figlin RA, Holmes EC, Souza LM, Slamon DJ: Expression patterns of immediate-early transcription factors in human nonsmall cell lung-cancer. Oncogene 1995, 11:1261-1269.
  • [30]Blackstone E, Morrison M, Roth MB: H2S induces a suspended animation-like state in mice. Science 2005, 308:518.
  • [31]Ueki I, Roman HB, Valli A, Fieselmann K, Lam J, Peters R, Hirschberger LL, Stipanuk MH: Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide. Am J Physiol Endocrinol Metab 2011, 301:E668-E684.
  • [32]Long JC, Caceres JF: The SR protein family of splicing factors: master regulators of gene expression. Biochem J 2009, 417:15-27.
  • [33]Wheater MJ, Johnson PW, Blaydes JP: The role of MNK proteins and eIF4E phosphorylation in breast cancer cell proliferation and survival. Cancer Biol Ther 2010, 10:728-735.
  • [34]Storey KB: Reptile freeze tolerance: Metabolism and gene expression. Cryobiology 2006, 52:1-16.
  • [35]Biggar KK, Storey KB: The emerging roles of microRNAs in the molecular responses of metabolic rate depression. J Mol Cell Biol 2011, 3:167-175.
  • [36]Garzon R, Liu SJ, Fabbri M, Liu ZF, Heaphy CEA, Callegari E, Schwind S, Pang JX, Yu JH, Muthusamy N, Havelange V, Volinia S, Blum W, Rush LJ, Perrotti D, Andreeff M, Bloomfield CD, Byrd JC, Chan K, Wu LC, Croce CM, Marcucci G: MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 2009, 113:6411-6418.
  • [37]He AB, Zhu LB, Gupta N, Chang YS, Fang F: Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol 2007, 21:2785-2794.
  • [38]Zhang XX, Zeng Y: The terminal loop region controls microRNA processing by Drosha and Dicer. Nucleic Acids Res 2010, 38:7689-7697.
  • [39]Davit-Beal T, Tucker AS, Sire JY: Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations. J Anat 2009, 214:477-501.
  • [40]Meredith RW, Gatesy J, Cheng J, Springer MS: Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales. Proc Biol Sci 2011, 278:993-1002.
  • [41]Sire JY, Delgado SC, Girondot M: Hen's teeth with enamel cap: from dream to impossibility. BMC Evol Biol 2008, 8:246. BioMed Central Full Text
  • [42]Kim EB, Fang XD, Fushan AA, Huang ZY, Lobanov AV, Han LJ, Marino SM, Sun XQ, Turanov AA, Yang PC, Yim SH, Zhao X, Kasaikina MV, Stoletzki N, Peng CF, Polak P, Xiong ZQ, Kiezun A, Zhu YB, Chen YX, Kryukov GV, Zhang Q, Peshkin L, Yang L, Bronson RT, Buffenstein R, Wang B, Han CL, Li QY, Chen L, et al.: Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 2011, 479:223-227.
  • [43]de Magalhaes JP, Costa J, Toussaint O: HAGR: the human ageing genomic resources. Nucleic Acids Res 2005, 33:D537-D543.
  • [44]Dillin A, Hsu AL, Arantes-Oliveira NA, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C: Rates of behavior and aging specified by mitochondrial function during development. Science 2002, 298:2398-2401.
  • [45]Undie AS, Wang HY, Friedman E: Decreased phospholipase C-beta immunoreactivity, phosphoinositide metabolism, and protein-kinase-C activation in senescent F344 rat-brain. Neurobiol Aging 1995, 16:19-28.
  • [46]Janzen FJ, Krenz JG: Phylogenetics: which was first, TSD of GSD?. In Temperature-Dependent Sex Determination in Vertebrates. Valenzuela N, Lance VA edition. Smithsonian Books; 2004:121-130.
  • [47]Bachtrog D, Kirkpatrick M, Mank JE, McDaniel SF, Pires JC, Rice WR, Valenzuela N: Are all sex chromosomes created equal?. Trends Genet 2011, 27:350-357.
  • [48]Valenzuela N, Neuwald JL, Literman R: Transcriptional evolution underlying vertebrate sexual development. Dev Dyn 2013, 242:307-319.
  • [49]Valenzuela N: Multivariate expression analysis of the gene network underlying sexual development in turtle embryos with temperature-dependent and genotypic sex determination. Sex Dev 2010, 4:39-49.
  • [50]Barley AJ, Spinks PQ, Thomson RC, Shaffer HB: Fourteen nuclear genes provide phylogenetic resolution for difficult nodes in the turtle tree of life. Mol Phylogen Evol 2010, 55:1189-1194.
  • [51]Krenz JG, Naylor GJP, Shaffer HB, Janzen FJ: Molecular phylogenetics and evolution of turtles. Mol Phylogen Evol 2005, 37:178-191.
  • [52]Shaffer HB, Meylan P, McKnight ML: Tests of turtle phylogeny: Molecular, morphological, and paleontological approaches. Syst Biol 1997, 46:235-268.
  • [53]Grey HM: Phylogeny of immune response-studies on some physical chemical serologic characteristics of antibody produced in turtle. J Immunol 1963, 91:819-825.
  • [54]Zimmerman LM, Vogel LA, Bowden RM: Understanding the vertebrate immune system: insights from the reptilian perspective. J Exp Biol 2010, 213:661-671.
  • [55]Brownlie R, Allan B: Avian toll-like receptors. Cell Tissue Res 2011, 343:121-130.
  • [56]Dalla Valle L, Nardi A, Toni M, Emera D, Alibardi L: Beta-keratins of turtle shell are glycine-proline-tyrosine rich proteins similar to those of crocodilians and birds. J Anat 2009, 214:284-300.
  • [57]Yang ZH, Nielsen R: Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 2002, 19:908-917.
  • [58]Kosiol C, Vinar T, da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, Siepel A: Patterns of positive selection in six mammalian genomes. PLoS Genet 2008, 4:e1000144.
  • [59]Kohroki J, Nishiyama T, Nakamura T, Masuho Y: ASB proteins interact with Cullin5 and Rbx2 to form E3 ubiquitin ligase complexes. FEBS Lett 2005, 579:6796-6802.
  • [60]Murdoch C, Finn A: Chemokine receptors and their role in inflammation and infectious diseases. Blood 2000, 95:3032-3043.
  • [61]Kopp A: Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet 2012, 28:175-184.
  • [62]Schwartz TS, Bronikowski AM: Molecular stress pathways and the evolution of reproduction and aging in reptiles. In Molecular Mechanisms of Life History Evolution. Flatt T, Heyland A edition. Oxford: Oxord University Press; 2011:193-209.
  • [63]Schneider A, Souvorov A, Sabath N, Landan G, Gonnet GH, Graur D: Estimates of positive Darwinian selection are inflated by errors in sequencing, annotation, and alignment. Genome Biol Evol 2009, 1:114-118.
  • [64]Turtle Taxonomy Working Group: Turtles of the World, 2012 Update: annotated checklist of taxonomy, synonymy, distribution, and conservation Status. In Chelonian Research Monographs, No 5. van Dijk PP, Iverson JB, Shaffer HB, Bour R, Rhodin AGJ edition. Lunenburg, MA: Chelonian Research Foundation; 2012.
  • [65]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.
  • [66]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data P: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25:2078-2079.
  • [67]Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W: Human-mouse alignments with BLASTZ. Genome Res 2003, 13:103-107.
  • [68]Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D: Evolution's cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci USA 2003, 100:11484-11489.
  • [69]Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998, 8:175-185.
  • [70]Kent WJ: BLAT - The BLAST-like alignment tool. Genome Res 2002, 12:656-664.
  • [71]Shin H, Hirst M, Bainbridge MN, Magrini V, Mardis E, Moerman DG, Marra MA, Baillie DL, Jones SJM: Transcriptome analysis for Caenorhabditis elegans based on novel expressed sequence tags. BMC Biol 2008, 6:30. BioMed Central Full Text
  • [72]Hillier LW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, Bork P, Burt DW, Groenen MAM, Delany ME, Dodgson JB, Chinwalla AT, Cliften PF, Clifton SW, Delehaunty KD, Fronick C, Fulton RS, Graves TA, Kremitzki C, Layman D, Magrini V, McPherson JD, Miner TL, Minx P, Nash WE, Nhan MN, Nelson JO, Oddy LG, Pohl CS, Randall-Maher J, et al.: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 2004, 432:695-716.
  • [73]Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999, 27:573-580.
  • [74]Mayer C: Phobos 3.3.11. 2006.
  • [75][https://github.com/hmsrc/RMPipeline] webcite
  • [76]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, et al.: Initial sequencing and analysis of the human genome. Nature 2001, 409:860-921.
  • [77]Dreszer TR, Karolchik D, Zweig AS, Hinrichs AS, Raney BJ, Kuhn RM, Meyer LR, Wong M, Sloan CA, Rosenbloom KR, Roe G, Rhead B, Pohl A, Malladi VS, Li CH, Learned K, Kirkup V, Hsu F, Harte RA, Guruvadoo L, Goldman M, Giardine BM, Fujita PA, Diekhans M, Cline MS, Clawson H, Barber GP, Haussler D, Kent WJ: The UCSC Genome Browser database: extensions and updates 2011. Nucleic Acids Res 2012, 40:D918-D923.
  • [78]Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AFA, Roskin KM, Baertsch R, Rosenbloom K, Clawson H, Green ED, Haussler D, Miller W: Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res 2004, 14:708-715.
  • [79]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [80]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [81]Rambaut A, Drummond AJ: Tracer v1.4. [http://beast.bio.ed.ac.uk/Tracer] webcite 2007.
  • [82]Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A: Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res 2009, 37:e123.
  • [83]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25:1105-1111.
  • [84]Roberts A, Pimentel H, Trapnell C, Pachter L: Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 2011, 27:2325-2329.
  • [85]Lu C, King RD: An investigation into the population abundance distribution of mRNAs, proteins, and metabolites in biological systems. Bioinformatics 2009, 25:2020-2027.
  • [86]Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003, 31:3406-3415.
  • [87]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [88]Girondot M, Sire JY: UniDPlot: A software to detect weak similarities between two DNA sequences. J Bioinformatics Sequence Anal 2010, 2:69-74.
  • [89]Huang XQ, Miller W: A time-efficient, linear-space local similarity algorithm. Adv Appl Math 1991, 12:337-357.
  • [90]Wu TD, Watanabe CK: GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 2005, 21:1859-1875.
  • [91]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28:511-U174.
  • [92]Biomatters: Geneious Pro. [http://www.geneious.com/] webcite
  • [93]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [94]Nei M, Gojobori T: Simple methods for estimating the number of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 1986, 3:418-426.
  • [95]Birney E, Andrews D, Caccamo M, Chen Y, Clarke L, Coates G, Cox T, Cunningham F, Curwen V, Cutts T, Down T, Durbin R, Fernandez-Suarez XM, Flicek P, Graf S, Hammond M, Herrero J, Howe K, Iyer V, Jekosch K, Kahari A, Kasprzyk A, Keefe D, Kokocinski F, Kulesha E, London D, Longden I, Melsopp C, Meidl P, Overduin B, et al.: Ensembl 2006. Nucleic Acids Res 2006, 34:D556-D561.
  • [96]Haider S, Ballester B, Smedley D, Zhang JJ, Rice P, Kasprzyk A: BioMart Central Portal-unified access to biological data. Nucleic Acids Res 2009, 37:W23-W27.
  • [97]Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [98]Heger A, Ponting CP: OPTIC: orthologous and paralogous transcripts in clades. Nucleic Acids Res 2008, 36:D267-D270.
  • [99]Goodstadt L, Ponting CP: Phylogenetic reconstruction of orthology, paralogy, and conserved synteny for dog and human. PLoS Comp Biol 2006, 2:1134-1150.
  • [100]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [101]Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E: EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 2009, 19:327-335.
  • [102]Yang ZH: PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24:1586-1591.
  • [103]Wootton JC, Federhen S: Analysis of compositionally biased regions in sequence databases. Computer Methods for Macromolecular Sequence Analysis 1996, 266:554-571.
  • [104]Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000, 17:540-552.
  • [105][http://genserv.anat.ox.ac.uk/clades/vertebrates_cpicta2/] webcite
  • [106]Fraser RDB, Parry DAD: Molecular packing in the feather keratin filament. J Struct Biol 2008, 162:1-13.
  • [107]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307-321.
  • [108]Matsuda F, Ishii K, Bourvagnet P, Kuma K, Hayashida H, Miyata T, Honjo T: The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus. J Exp Med 1998, 188:2151-2162.
  • [109]Watson CT, Breden F: The immunoglobulin heavy chain locus: genetic variation, missing data, and implications for human disease. Genes Immun, in press.
  • [110]Das S, Mohamedy U, Hirano M, Nei M, Nikolaidis N: Analysis of the immunoglobulin light chain genes in Zebra Finch: evolutionary implications. Mol Biol Evol 2010, 27:113-120.
  • [111]Barten R, Torkar M, Haude A, Trowsdale J, Wilson MJ: Divergent and convergent evolution of NK-cell receptors. Trends Immunol 2001, 22:52-57.
  • [112]Laun K, Coggill P, Palmer S, Sims S, Ning ZM, Ragoussis J, Volpi E, Wilson N, Beck S, Ziegler A, Volz A: The leukocyte receptor complex in chicken is characterized by massive expansion and diversification of immunoglobulin-like loci. PLoS Genet 2006, 2:707-718.
  • [113]Nikolaidis N, Makalowska I, Chalkia D, Makalowski W, Klein J, Nei M: Origin and evolution of the chicken leukocyte receptor complex. Proc Natl Acad Sci USA 2005, 102:4057-4062.
  • [114]Viertlboeck BC, Gick CM, Schmitt R, Du Pasquier L, Gobel TW: Complexity of expressed CHIR genes. Dev Comp Immunol 2010, 34:866-873.
  • [115]Krogh A, Larsson B, von Heijne G, Sonnhammer ELL: Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 2001, 305:567-580.
  • [116]Zhang JZ, Nielsen R, Yang ZH: Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 2005, 22:2472-2479.
  • [117]Holm S: A simple sequentially rejective multiple test procedure. Scand J Stat 1979, 6:65-70.
  • [118]Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D: The human genome browser at UCSC. Genome Res 2002, 12:996-1006.
  • [119][http://pre.ensembl.org/index.html] webcite
  • [120][http://www.ncbi.nlm.nih.gov] webcite
  文献评价指标  
  下载次数:27次 浏览次数:18次