期刊论文详细信息
Journal of Biomedical Science
Immortalized mesenchymal stem cells: an alternative to primary mesenchymal stem cells in neuronal differentiation and neuroregeneration associated studies
Tingyu Li1  Jie Chen1  Xiaoping Wei1  Youxue Liu1  Nali Hou1  Li Chen1  Yun Zhang1  Wei Jiang1  Yang Bi1  Min Gong1 
[1] Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
关键词: hypoxic-ischemic brain damage;    cell transplantation;    neuronal differentiation;    cell senescence;    simian virus 40 large T;    reversible immortalization;    mesenchymal stem cells;   
Others  :  1146843
DOI  :  10.1186/1423-0127-18-87
 received in 2011-07-23, accepted in 2011-11-25,  发布年份 2011
PDF
【 摘 要 】

Background

Mesenchymal stem cells (MSCs) can be induced to differentiate into neuronal cells under appropriate cellular conditions and transplanted in brain injury and neurodegenerative diseases animal models for neuroregeneration studies. In contrast to the embryonic stem cells (ESCs), MSCs are easily subject to aging and senescence because of their finite ability of self-renewal. MSCs senescence seriously affected theirs application prospects as a promising tool for cell-based regenerative medicine and tissue engineering. In the present study, we established a reversible immortalized mesenchymal stem cells (IMSCs) line by using SSR#69 retrovirus expressing simian virus 40 large T (SV40T) antigen as an alternative to primary MSCs.

Methods

The retroviral vector SSR#69 expressing simian virus 40 large T (SV40T) antigen was used to construct IMSCs. IMSCs were identified by flow cytometry to detect cell surface makers. To investigate proliferation and differentiation potential of IMSCs, cell growth curve determination and mesodermal trilineage differentiation tests were performed. Neuronal differentiation characteristics of IMSCs were detected in vitro. Before IMSCs transplantation, we excluded its tumorigenicity in nude mice firstly. The Morris water maze tests and shuttle box tests were performed five weeks after HIBD models received cells transplantation therapy.

Results

In this study, reversible IMSCs were constructed successfully and had the similar morphology and cell surface makers as primary MSCs. IMSCs possessed better ability of proliferation and anti-senescence compared with primary MSCs, while maintained multilineage differentiation capacity. Neural-like cells derived from IMSCs had similar expressions of neural-specific genes, protein expression patterns and resting membrane potential (RMP) compared with their counterparts derived from primary MSCs. There was no bump formation in nude mice subcutaneously injected with IMSCs. IMSCs played same role as primary MSCs to improve learning ability and spatial memory of HIBD rats.

Conclusions

IMSCs not only retain their features of primary MSCs but also possess the ability of high proliferation and anti-senescence. IMSCs can definitely be induced to differentiate into neuronal cells in vitro and take the place of primary MSCs for cell transplantation therapy without tumorigenesis in vivo. The stable cell line is particularly useful and valuable as an alternative to MSCs in neuronal differentiation and neuroregeneration associated studies.

【 授权许可】

   
2011 Gong et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150403165650410.pdf 26377KB PDF download
Figure 7. 56KB Image download
Figure 6. 198KB Image download
Figure 4. 99KB Image download
Figure 4. 134KB Image download
Figure 3. 96KB Image download
Figure 2. 62KB Image download
Figure 1. 138KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 4.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002, 418(6893):41-9.
  • [2]Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284(5411):143-7.
  • [3]Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR: Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000, 290(5497):1779-82.
  • [4]Joshi CV, Enver T: Plasticity revisited. Curr Opin Cell Biol 2002, 14(6):749-55.
  • [5]Ishii K, Yoshida Y, Akechi Y, Sakabe T, Nishio R, Ikeda R, Terabayashi K, Matsumi Y, Gonda K, Okamoto H, Takubo K, Tajima F, Tsuchiya H, Hoshikawa Y, Kurimasa A, Umezawa A, Shiota G: Hepatic differentiation of human bone marrow-derived mesenchymal stem cells by tetracycline-regulated hepatocyte nuclear factor 3beta. Hepatology 2008, 48(2):597-606.
  • [6]Wang SH, Lin SJ, Chen YH, Lin FY, Shih JC, Wu CC, Wu HL, Chen YL: Late outgrowth endothelial cells derived from Wharton jelly in human umbilical cord reduce neointimal formation after vascular injury: involvement of pigment epithelium-derived factor. Arterioscler Thromb Vasc Biol 2009, 29(6):816-22.
  • [7]Brazelton TR, Rossi FM, Keshet GI, Blau HM: From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000, 290(5497):1775-9.
  • [8]Woodbury D, Schwarz EJ, Prockop DJ, Black IB: Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000, 61(4):364-70.
  • [9]Bi Y, Gong M, Zhang X, Zhang X, Jiang W, Zhang Y, Chen J, Liu Y, He TC, Li T: Pre-activation of retinoid signaling facilitates neuronal differentiation of mesenchymal stem cells. Dev Growth Differ 2010, 52(5):419-31.
  • [10]Liu Y, Zhang X, Dai Y, Shu C, Qu P, Liu YX, Yang L, Li TY: [Effects of bone marrow mesenchymal stem cells on learning and memory functional recovery in neonatal rats with hypoxic-ischemic brain damage]. Zhonghua Er Ke Za Zhi 2008, 46(9):648-53.
  • [11]Young RA: Control of the embryonic stem cell state. Cell 2011, 144(6):940-54.
  • [12]Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD: Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 2008, 3(5):e2213.
  • [13]Vacanti V, Kong E, Suzuki G, Sato K, Canty JM, Lee T: Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J Cell Physiol 2005, 205(2):194-201.
  • [14]Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I: Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 2004, 22(5):675-82.
  • [15]Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM: Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells 2007, 25(3):646-54.
  • [16]Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V, Fiaccavento R, Carotenuto F, De Vito P, Baldini PM, Prat M, Di Nardo P: Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells 2006, 24(1):23-33.
  • [17]Ito T, Sawada R, Fujiwara Y, Seyama Y, Tsuchiya T: FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochem Biophys Res Commun 2007, 359(1):108-14.
  • [18]Ebert R, Ulmer M, Zeck S, Meissner-Weigl J, Schneider D, Stopper H, Schupp N, Kassem M, Jakob F: Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 2006, 24(5):1226-35.
  • [19]Westerman KA, Leboulch P: Reversible immortalization of mammalian cells mediated by retroviral transfer and site-specific recombination. Proc Natl Acad Sci USA 1996, 93(17):8971-6.
  • [20]Zhang J, Chatterjee K, Alano CC, Kalinowski MA, Honbo N, Karliner JS: Vincristine attenuates N-methyl-N'-nitro-N-nitrosoguanidine-induced poly-(ADP) ribose polymerase activity in cardiomyocytes. J Cardiovasc Pharmacol 2010, 55(3):219-26.
  • [21]Russell KC, Phinney DG, Lacey MR, Barrilleaux BL, Meyertholen KE, O'Connor KC: In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 2010, 28(4):788-98.
  • [22]Kuçi S, Kuçi Z, Kreyenberg H, Deak E, Pütsch K, Huenecke S, Amara C, Koller S, Rettinger E, Grez M, Koehl U, Latifi-Pupovci H, Henschler R, Tonn T, von Laer D, Klingebiel T, Bader P: CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties. Haematologica 2010, 95(4):651-9.
  • [23]Kim BS, Lee CC, Christensen JE, Huser TR, Chan JW, Tarantal AF: Growth, differentiation, and biochemical signatures of rhesus monkey mesenchymal stem cells. Stem Cells Dev 2008, 17(1):185-98.
  • [24]Yi Z, Sperzel L, Nürnberger C, Bredenbeek PJ, Lubick KJ, Best SM, Stoyanov CT, Law LM, Yuan Z, Rice CM, MacDonald MR: Identification and characterization of the host protein DNAJC14 as a broadly active flavivirus replication modulator. PLoS Pathog 2011, 7(1):e1001255.
  • [25]Chen L, Jiang W, Huang J, He BC, Zuo GW, Zhang W, Luo Q, Shi Q, Zhang BQ, Wagner ER, Luo J, Tang M, Wietholt C, Luo X, Bi Y, Su Y, Liu B, Kim SH, He CJ, Hu Y, Shen J, Rastegar F, Huang E, Gao Y, Gao JL, Zhou JZ, Reid RR, Luu HH, Haydon RC, He TC, Deng ZL: Insulin-like growth factor 2 (IGF-2) potentiates BMP-9-induced osteogenic differentiation and bone formation. J Bone Miner Res 2010, 25(11):2447-59.
  • [26]Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ: Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 1981, 391(2):85-100.
  • [27]Rice JE, Vannucci RC, Brierley JB: The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 1981, 9(2):131-41.
  • [28]Morris R: Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984, 11(1):47-60.
  • [29]Arufe MC, De la Fuente A, Fuentes I, de Toro FJ, Blanco FJ: Chondrogenic potential of subpopulations of cells expressing mesenchymal stem cell markers derived from human synovial membranes. J Cell Biochem 2010, 111(4):834-45.
  • [30]Wang JF, Wang LJ, Wu YF, Xiang Y, Xie CG, Jia BB, Harrington J, McNiece IK: Mesenchymal stem/progenitor cells in human umbilical cord blood as support for ex vivo expansion of CD34(+) hematopoietic stem cells and for chondrogenic differentiation. Haematologica 2004, 89(7):837-44.
  • [31]Zhang L, Seitz LC, Abramczyk AM, Liu L, Chan C: cAMP initiates early phase neuron-like morphology changes and late phase neural differentiation in mesenchymal stem cells. Cell Mol Life Sci 2011, 68(5):863-76.
  • [32]Glavaski-Joksimovic A, Virag T, Mangatu TA, McGrogan M, Wang XS, Bohn MC: Glial cell line-derived neurotrophic factor-secreting genetically modified human bone marrow-derived mesenchymal stem cells promote recovery in a rat model of Parkinson's disease. J Neurosci Res 2010, 88(12):2669-81.
  • [33]Hayase M, Kitada M, Wakao S, Itokazu Y, Nozaki K, Hashimoto N, Takagi Y, Dezawa M: Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke. J Cereb Blood Flow Metab 2009, 29(8):1409-20.
  • [34]Tate CC, Fonck C, McGrogan M, Case CC: Human mesenchymal stromal cells and their derivative, SB623 cells, rescue neural cells via trophic support following in vitro ischemia. Cell Transplant 2010, 19(8):973-84.
  • [35]Pal R, Gopinath C, Rao NM, Banerjee P, Krishnamoorthy V, Venkataramana NK, Totey S: Functional recovery after transplantation of bone marrow-derived human mesenchymal stromal cells in a rat model of spinal cord injury. Cytotherapy 2010, 12(6):792-806.
  • [36]Sames KS, S Stolzing A: Extending the lifespan. In Biotechnical, Gerontological, and Social Problems. Medizin und Gesellschaft, Hamburg; 2005.
  • [37]Sethe S, Scutt A, Stolzing A: Aging of mesenchymal stem cells. Ageing Res Rev 2006, 5(1):91-116.
  • [38]Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ: Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 1999, 107(2):275-81.
  • [39]Mets T, Verdonk G: In vitro aging of human bone marrow derived stromal cells. Mech Ageing Dev 1981, 16(1):81-9.
  • [40]Ali SH, DeCaprio JA: Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol 2001, 11(1):15-23.
  • [41]Liang XJ, Chen XJ, Yang DH, Huang SM, Sun GD, Chen YP: Human umbilical cord mesenchymal stem cells by hTERT Gene Transfection can differentiate into hepatocyte-like cells in vitro. Cell Biol Int 2011, in press.
  • [42]Wei LL, Gao K, Liu PQ, Lu XF, Li SF, Cheng JQ, Li YP, Lu YR: Mesenchymal stem cells from Chinese Guizhou minipig by hTERT gene transfection. Transplant Proc 2008, 40(2):547-50.
  • [43]Gao K, Lu YR, Wei LL, Lu XF, Li SF, Wan L, Li YP, Cheng JQ: Immortalization of mesenchymal stem cells from bone marrow of rhesus monkey by transfection with human telomerase reverse transcriptase gene. Transplant Proc 2008, 40(2):634-7.
  • [44]Pan X, Du W, Yu X, Sheng G, Cao H, Yu C, Lv G, Huang H, Chen Y, Li J, Li LJ: Establishment and characterization of immortalized porcine hepatocytes for the study of hepatocyte xenotransplantation. Transplant Proc 2010, 42(5):1899-906.
  • [45]Cai J, Ito M, Westerman KA, Kobayashi N, Leboulch P, Fox IJ: Construction of a non-tumorigenic rat hepatocyte cell line for transplantation: reversal of hepatocyte immortalization by site-specific excision of the SV40 T antigen. J Hepatol 2000, 33(5):701-8.
  • [46]Yang J, Cao C, Wang W, Tong X, Shi D, Wu F, Zheng Q, Guo C, Pan Z, Gao C, Wang J: Proliferation and osteogenesis of immortalized bone marrow-derived mesenchymal stem cells in porous polylactic glycolic acid scaffolds under perfusion culture. J Biomed Mater Res A 2010, 92(3):817-29.
  • [47]Darimont C, Mace K: Immortalization of human preadipocytes. Biochimie 2003, 85(12):1231-3.
  • [48]Anastassiadis K, Rostovskaya M, Lubitz S, Weidlich S, Stewart AF: Precise conditional immortalization of mouse cells using tetracycline-regulated SV40 large T-antigen. Genesis 2010, 48(4):220-32.
  • [49]Hung CJ, Yao CL, Cheng FC, Wu ML, Wang TH, Hwang SM: Establishment of immortalized mesenchymal stromal cells with red fluorescence protein expression for in vivo transplantation and tracing in the rat model with traumatic brain injury. Cytotherapy 2010, 12(4):455-65.
  • [50]Okamoto T, Aoyama T, Nakayama T, Nakamata T, Hosaka T, Nishijo K, Nakamura T, Kiyono T, Toguchida J: Clonal heterogeneity in differentiation potential of immortalized human mesenchymal stem cells. Biochem Biophys Res Commun 2002, 295(2):354-61.
  • [51]Abdallah BM, Haack-Sørensen M, Burns JS, Elsnab B, Jakob F, Hokland P, Kassem M: Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite [corrected] extensive proliferation. Biochem Biophys Res Commun 2005, 326(3):527-38.
  • [52]Tropel P, Platet N, Platel JC, Noël D, Albrieux M, Benabid AL, Berger F: Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 2006, 24(12):2868-76.
  • [53]Walker PA, Harting MT, Jimenez F, Shah SK, Pati S, Dash PK, Cox CS Jr: Direct intrathecal implantation of mesenchymal stromal cells leads to enhanced neuroprotection via an NFkappaB-mediated increase in interleukin-6 production. Stem Cells Dev 2010, 19(6):867-76.
  • [54]Whone AL, Scolding NJ: Mesenchymal stem cells and neurodegenerative disease. Clin Pharmacol Ther 2009, 85(1):19-20.
  • [55]Kobayashi N, Fujiwara T, Westerman KA, Inoue Y, Sakaguchi M, Noguchi H, Miyazaki M, Cai J, Tanaka N, Fox IJ, Leboulch P: Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 2000, 287(5456):1258-62.
  • [56]Liu J, Pan J, Naik S, Santangini H, Trenkler D, Thompson N, Rifai A, Chowdhury JR, Jauregui HO: Characterization and evaluation of detoxification functions of a nontumorigenic immortalized porcine hepatocyte cell line (HepLiu). Cell Transplant 1999, 8(3):219-32.
  • [57]Nguyen TH, Mai G, Villiger P, Oberholzer J, Salmon P, Morel P, Bühler L, Trono D: Treatment of acetaminophen-induced acute liver failure in the mouse with conditionally immortalized human hepatocytes. J Hepatol 2005, 43(6):1031-7.
  • [58]Saenz RMT, Pipas JM: T antigen transgenic mouse models. Semin Cancer Biol 2009, 19(4):229-35.
  • [59]Pipas JM: SV40: Cell transformation and tumorigenesis. Virology 2009, 384(2):294-303.
  • [60]D'Hooge R, De Deyn PP: Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 2001, 36(1):60-90.
  • [61]Ahlenius S, Engel J, Lundborg P: Antagonism by d-amphetamine of learning deficits in rats induced by exposure to antipsychotic drugs during early postnatal life. Naunyn Schmiedebergs Arch Pharmacol 1975, 288(2-3):185-93.
  文献评价指标  
  下载次数:0次 浏览次数:5次