Journal of Nanobiotechnology | |
The antimicrobial activity of free and immobilized poly (diallyldimethylammonium) chloride in nanoparticles of poly (methylmethacrylate) | |
Ana Maria Carmona-Ribeiro1  Letícia Dias de Melo Carrasco1  Denise Freitas Siqueira Petri3  Luccas Missfeldt Sanches2  | |
[1] Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, CEP 05508-900, Brazil;Biocolloids Lab, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05513-970, SP, Brazil;Instituto de Química, Universidade de São Paulo, São Paulo, CEP 05513-970, SP, Brazil | |
关键词: Particle characterization by light scattering and scanning electron microscopy; Poly (methylmethacrylate); Antimicrobial nanoparticles; Antimicrobial polymer; Biocompatible polymer; | |
Others : 1230519 DOI : 10.1186/s12951-015-0123-3 |
|
received in 2015-06-26, accepted in 2015-09-15, 发布年份 2015 | |
【 摘 要 】
Background
Several cationic polymers exhibit a useful antimicrobial property, however the structure–activity relationship still requires a more complete investigation. The main objective of this work is the comparison between the antimicrobial activity and toxicity of free and immobilized poly (diallyldimethylammonium) chloride (PDDA) in biocompatible poly (methylmethacrylate) (PMMA) nanoparticles (NPs).
Results
NPs synthesis by emulsion polymerization is performed over a range of [PDDA] at two methylmethacrylate (MMA) concentrations. The PMMA/PDDA dispersions are characterized by dynamic light-scattering for sizing, polydispersity and zeta-potential analysis, scanning electron microscopy (SEM), plating plus colony forming unities (CFU) counting for determination of the minimal microbicidal concentrations (MMC) against Escherichia coli, Staphylococcus aureus and Candida albicans and hemolysis evaluation against mammalian erythrocytes. There is a high colloidal stability for the cationic PMMA/PDDA NPs over a range of [PDDA]. NPs diverse antimicrobial activity against the microorganisms reduces cell viability by eight-logs (E. coli), seven-logs (S. aureus) or two-logs (C. albicans). The NPs completely kill E. coli over a range of [PDDA] that are innocuous to the erythrocytes. Free PDDA antimicrobial activity is higher than the one observed for PDDA in the NPs. There is no PDDA induced-hemolysis at the MMC in contrast to the hemolytic effect of immobilized PDDA in the NPs. Hemolysis is higher than 15 % for immobilized PDDA at the MMC for S. aureus and C. albicans.
Conclusions
The mobility of the cationic antimicrobial polymer PDDA determines its access to the inner layers of the cell wall and the cell membrane, the major sites of PDDA antimicrobial action. PDDA freedom does matter for determining the antimicrobial activity at low PDDA concentrations and absence of hemolysis.
【 授权许可】
2015 Sanches et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151106092912586.pdf | 3020KB | download | |
Fig.9. | 17KB | Image | download |
Fig.8. | 33KB | Image | download |
Fig.7. | 45KB | Image | download |
Fig.6. | 46KB | Image | download |
Fig.5. | 45KB | Image | download |
Fig.4. | 46KB | Image | download |
Fig.3. | 9KB | Image | download |
Fig.2. | 133KB | Image | download |
Fig.1. | 21KB | Image | download |
【 图 表 】
Fig.1.
Fig.2.
Fig.3.
Fig.4.
Fig.5.
Fig.6.
Fig.7.
Fig.8.
Fig.9.
【 参考文献 】
- [1]Brooks BD, Brooks AE. Therapeutic strategies to combat antibiotic resistance. Adv Drug Deliv Rev. 2014; 78:14-27.
- [2]Bertesteanu S, Chifiriuc MC, Grumezescu AM, Printza AG, Marie-Paule T, Grumezescu V, Mihaela V, Lazar V, Grigore R. Biomedical applications of synthetic, biodegradable polymers for the development of anti-infective strategies. Curr Med Chem. 2014; 21(29):3383-3390.
- [3]Alvarez-Paino M, Muñoz-Bonilla A, López-Fabal F, Gómez-Garcés JL, Heuts JPA, Fernández-Garcia M. Functional surfaces obtained from emulsion polymerization using antimicrobial glycosylated block copolymers as surfactants. Polym Chem. 2015; 6:6171-6181.
- [4]Carmona-Ribeiro AM, de Melo Carrasco LD. Cationic antimicrobial polymers and their assemblies. Int J Mol Sci. 2013; 14(5):9906-9946.
- [5]Muñoz-Bonilla A, Fernández-Garcia M. The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. Eur Polym J. 2015; 65:46-62.
- [6]Khaira GK, Ganguli A, Ghosh M. Synthesis and evaluation of antibacterial activity of quaternized biopolymer from Klebsiella terrigena. J Appl Microbiol. 2014; 116(3):511-518.
- [7]Timofeeva L, Kleshcheva N. Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol. 2011; 89(3):475-492.
- [8]Ganewatta MS, Tang C. Controlling macromolecular structures towards effective antimicrobial polymers. Polymer. 2015; 63:A1-A29.
- [9]Taresco V, Crisante F, Francolini I, Martinelli A, D’Ilario L, Ricci-Vitiani L, Buccarelli M, Pietrelli L, Piozzi A. Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections. Acta Biomater. 2015; 22:131-140.
- [10]Xue Y, Xiao H, Zhang Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int J Mol Sci. 2015; 16(2):3626-3655.
- [11]Pereira EM, Kosaka PM, Rosa H, Vieira DB, Kawano Y, Petri DF, Carmona-Ribeiro AM. Hybrid materials from intermolecular associations between cationic lipid and polymers. J Phys Chem B. 2008; 112(31):9301-9310.
- [12]Melo LD, Palombo RR, Petri DF, Bruns M, Pereira EM, Carmona-Ribeiro AM. Structure-activity relationship for quaternary ammonium compounds hybridized with poly(methyl methacrylate). ACS Appl Mater Interfaces. 2011; 3(6):1933-1939.
- [13]Naves AF, Palombo RR, Carrasco LD, Carmona-Ribeiro AM. Antimicrobial particles from emulsion polymerization of methyl methacrylate in the presence of quaternary ammonium surfactants. Langmuir. 2013; 29(31):9677-9684.
- [14]Gan LM, Chew CH, Ng SC, Loh SE. Polymerization of methyl methacrylate in ternary systems: emulsion and microemulsion. Langmuir. 1993; 9:2799-2803.
- [15]El-Asser MS. Scientific methods for the study of polymer colloids and their applications. In: Candau F, Ottewill RH, editors. London: Kluwer, Academic Publishers. 1990.
- [16]Harkins WD. A general theory of the mechanism of emulsion polymerization. J Am Chem Soc. 1947; 69:1428-1444.
- [17]Lichti G, Gilbert RG, Napper DH. Mechanisms of latex particle formation and growth in the emulsion polymerization of styrene using the surfactant sodium dodecyl sulfate. J Polym Sci. 1983; 21:269-291.
- [18]Feeney PJ, Napper DH, Gilbert RG. Coagulative nucleation and particle size distributions in emulsion polymerization. Macromolecules. 1984; 17:2520-2529.
- [19]Capek I. Microemulsion polymerization of styrene in the presence of a cationic emulsifier. Adv Colloid Interface Sci. 2001; 92:195-233.
- [20]Antonietti M, Lohmann S, Van Niel C. Polymerization in microemulsion. 2. Surface control and functionalization of microparticles. Macromolecules. 1992; 25:1139-1143.
- [21]Vieira DB, Carmona-Ribeiro AM. Cationic nanoparticles for delivery of amphotericin B: preparation, characterization and activity in vitro. J Nanobiotechnol. 2008; 6:6. BioMed Central Full Text
- [22]Melo LD, Mamizuka EM, Carmona-Ribeiro AM. Antimicrobial particles from cationic lipid and polyelectrolytes. Langmuir. 2010; 26(14):12300-12306.
- [23]Carmona-Ribeiro AM, Carrasco LDM. Fungicidal assemblies and their mode of action. OA Biotechnol. 2013; 2:25.
- [24]Shirai A, Ueta S, Maseda H, Kourai H, Omasa T. Action of reactive oxygen species in the antifungal mechanism of gemini-pyridinium salts against yeast. Biocontrol Sci. 2012; 17(2):77-82.
- [25]Yarinich LA, Burakova EA, Zakharov BA, Boldyreva EV, Babkina IN, Tikunova NV, Silnikov VN. Synthesis and structure-activity relationship of novel 1,4-diazabicyclo[2.2.2]octane derivatives as potent antimicrobial agents. Eur J Med Chem. 2015; 95:563-573.
- [26]Hoque J, Akkapeddi P, Yarlagadda V, Uppu DS, Kumar P, Haldar J. Cleavable cationic antibacterial amphiphiles: synthesis, mechanism of action, and cytotoxicities. Langmuir. 2012; 28(33):12225-12234.
- [27]Tavano L, Infante MR, Riya MA, Pinazo A, Vinardell MP, Mitjans M, Manresa MA, Perez L. Role of aggregate size in the hemolytic and antimicrobial activity of colloidal solutions based on single and Gemini surfactants from arginine. Soft Matter. 2013; 9:306-319.
- [28]Wang Y, Corbitt TS, Jett SD, Tang Y, Schanze KS, Chi EY, Whitten DG. Direct visualization of bactericidal action of cationic conjugated polyelectrolytes and oligomers. Langmuir. 2012; 28(1):65-70.
- [29]Ilker MF, Nüsslein K, Tew GN, Coughlin EB. Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J Am Chem Soc. 2004; 126(48):15870-15875.
- [30]Findlay B, Zhanel GG, Schweizer F. Investigating the antimicrobial peptide ‘window of activity’ using cationic lipopeptides with hydrocarbon and fluorinated tails. Int J Antimicrob Agents. 2012; 40(1):36-42.
- [31]Jain K, Verma AK, Mishra PR, Jain NK. Characterization and evaluation of amphotericin B loaded MDP conjugated poly (propylene imine) dendrimers. Nanomedicine. 2015; 11(3):705-713.
- [32]Mohamed-Ahmed AH, Les KA, Seifert K, Croft SL, Brocchini S. Noncovalent complexation of amphotericin-B with Poly(α-glutamic acid). Mol Pharm. 2013; 10(3):940-950.
- [33]Barrat J, Joanny JF. Persistence length of polyelectrolyte chains. Europhys Lett. 1993; 24:333-338.
- [34]Otto M. Staphylococcus epidermidis—the “accidental” pathogen. Nat Rev Microbiol. 2009; 7:555-567.
- [35]Carrasco LD, Sampaio JL, Carmona-Ribeiro AM. Supramolecular cationic assemblies against multidrug-resistant microorganisms: activity and mechanism of action. Int J Mol Sci. 2015; 16(3):6337-6352.
- [36]Imazato S, Chen J, Ma S, Izutani N, Li F. Antibacterial resin monomers based on quaternary ammonium and their benefits in restorative dentistry. Jpn Dent Sci Rev. 2012; 48:115-125.
- [37]Thiagarajan G, Greish K, Ghandehari H. Charge affects the oral toxicity of poly(amidoamine) dendrimers. Eur J Pharm Biopharm. 2013; 84(2):330-334.
- [38]Bakker-Woudenberg IA, Schiffelers RM, Storm G, Becker MJ, Guo L. Long-circulating sterically stabilized liposomes in the treatment of infections. Methods Enzymol. 2005; 391:228-260.
- [39]Timofeeva LM, Kleshcheva NA, Moroz AF, Didenko LV. Secondary and tertiary polydiallylammonium salts: novel polymers with high antimicrobial activity. Biomacromolecules. 2009; 10(11):2976-2986.
- [40]Grabowski E, Morrison I. Measurements of suspended particles by quasi-elastic light scattering. In: Dahneke B, editor. New York: Wiley. 1983. pp 199–236.
- [41]Chapin KC, Lauderdale T. Reagents, stains, and media: bacteriology. In: Manual of clinical microbiology. 9th ed. Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA, editors. ASM Press, Washington; 2007: p.334-364.