期刊论文详细信息
EvoDevo
A cleavage clock regulates features of lineage-specific differentiation in the development of a basal branching metazoan, the ctenophore Mnemiopsis leidyi
Mark Q Martindale1  Jonathan Q Henry2  Kevin Pang3  Antje HL Fischer4 
[1] Whitney Lab for Marine Bioscience, Univ. Florida, 9505 Oceanshore Blvd, St, Augustine, FL 32080, USA;Department of Cell and Structural Biology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA;current address: Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55, Bergen N-5008, Norway;current address: Molecular and Cell Biology Department, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
关键词: Cell lineage;    Cell cycle arrest;    Actinomycin;    Puromycin;    Cytochalasin B;    Comb cell;    Photocyte;    Comb jelly;    Ctenophore;   
Others  :  802379
DOI  :  10.1186/2041-9139-5-4
 received in 2013-08-20, accepted in 2013-11-20,  发布年份 2014
PDF
【 摘 要 】

Background

An important question in experimental embryology is to understand how the developmental potential responsible for the generation of distinct cell types is spatially segregated over developmental time. Classical embryological work showed that ctenophores, a group of gelatinous marine invertebrates that arose early in animal evolution, display a highly stereotyped pattern of early development and a precocious specification of blastomere fates. Here we investigate the role of autonomous cell specification and the developmental timing of two distinct ctenophore cell types (motile compound comb-plate-like cilia and light-emitting photocytes) in embryos of the lobate ctenophore, Mnemiopsis leidyi.

Results

In Mnemiopsis, 9 h after fertilization, comb plate cilia differentiate into derivatives of the E lineage, while the bioluminescent capability begins in derivatives of the M lineage. Arresting cleavage with cytochalasin B at the 1-, 2- or 4-cell stage does not result in blastomere death; however, no visible differentiation of the comb-plate-like cilia or bioluminescence was observed. Cleavage arrest at the 8- or 16-cell stage, in contrast, results in the expression of both differentiation products. Fate-mapping experiments indicate that only the lineages of cells that normally express these markers in an autonomous fashion during normal development express these traits in cleavage-arrested 8- and 16-cell stage embryos. Lineages that form comb plates in a non-autonomous fashion (derivatives of the M lineage) do not. Timed actinomycin D and puromycin treatments show that transcription and translation are required for comb formation and suggest that the segregated material might be necessary for activation of the appropriate genes. Interestingly, even in the absence of cytokinesis, differentiation markers appear to be activated at the correct times. Treatments with a DNA synthesis inhibitor, aphidicolin, show that the number of nuclear divisions, and perhaps the DNA to cytoplasmic ratio, are critical for the appearance of lineage-specific differentiation.

Conclusion

Our work corroborates previous studies demonstrating that the cleavage program is causally involved in the spatial segregation and/or activation of factors that give rise to distinct cell types in ctenophore development. These factors are segregated independently to the appropriate lineage at the 8- and the 16-cell stages and have features of a clock, such that comb-plate-like cilia and light-emitting photoproteins appear at roughly the same developmental time in cleavage-arrested embryos as they do in untreated embryos. Nuclear division, which possibly affects DNA-cytoplasmic ratios, appears to be important in the timing of differentiation markers. Evidence suggests that the 60-cell stage, just prior to gastrulation, is the time of zygotic gene activation. Such cleavage-clock-regulated phenomena appear to be widespread amongst the Metazoa and these cellular and molecular developmental mechanisms probably evolved early in metazoan evolution.

【 授权许可】

   
2013 Fischer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708021248996.pdf 31289KB PDF download
Figure 8. 148KB Image download
Figure 7. 92KB Image download
Figure 6. 67KB Image download
Figure 5. 64KB Image download
Figure 4. 50KB Image download
Figure 3. 101KB Image download
Figure 2. 132KB Image download
Figure 1. 185KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Martindale MQ, Henry JQ: Reassessing embryogenesis in the Ctenophora: the inductive role of e1 micromeres in organizing ctene row formation in the 'mosaic' embryo, Mnemiopsis leidyi. Dev 1997, 124(10):1999-2006.
  • [2]Henry JQ, Martindale MQ: Evolution of cleavage programs in relationship to axial specification and body plan evolution. Biol Bull 1998, 195(3):363-366.
  • [3]Martindale MQ, Finnerty JR, Henry JQ: The Radiata and the evolutionary origins of the bilaterian body plan. Mol Phylogenet Evol 2002, 24(3):358-365.
  • [4]Martindale MQ, Henry JQ: Intracellular fate mapping in a basal metazoan, the ctenophore Mnemiopsis leidyi, reveals the origins of mesoderm and the existence of indeterminate cell lineages. Dev Biol 1999, 214:243-257.
  • [5]Martindale MQ, Henry JQ: The development of radial and biradial symmetry: the evolution of bilaterality. Am Zool 1998, 38(4):672-684.
  • [6]Martindale MQ: The ontogeny and maintenance of adult symmetry properties in the ctenophore. Mnemiopsis mccradyi. Dev Biol 1986, 118(2):556-576.
  • [7]Martindale M, Henry J: Development and regeneration of comb plates in the ctenophore Mnemiopsis leidyi. Biol Bull 1996, 191(2):290-292.
  • [8]Driesch H, Morgan TH: Zur Analysis der ersten Entwickelungsstadien des Ctenophoreneies. Archiv für Entwicklungsmechanik der Organismen 1895, 2(2):204-215.
  • [9]Chun C: Die Ctenophoren des Golfes von Neapel und der angrenzenden Meeres-Abschnitte: eine Monographie. Fauna und Flora des Golfes von Neapel 1880, 1:1-311.
  • [10]Freeman G: The establishment of the oral-aboral axis in the ctenophore embryo. J Embryol Exp Morphol 1977, 42(1):237-260.
  • [11]Freeman G, Reynolds GT: The development of bioluminescence in the ctenophore Mnemiopsis leidyi. Dev Biol 1973, 31(1):61-100.
  • [12]Tamm SL, Tamm S: Ciliary reversal without rotation of axonemal structures in ctenophore comb plates. J Cell Biol 1981, 89(3):495-509.
  • [13]Pang K, Ryan JF, Mullikin JC, Baxevanis AD, Martindale MQ: Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi. EvoDevo 2010, 1(1):10. BioMed Central Full Text
  • [14]Henry JQ, Martindale MQ: Inductive interactions and embryonic equivalence groups in a basal metazoan, the ctenophore Mnemiopsis leidyi. Evol Dev 2004, 6:17-24.
  • [15]Martindale M, Henry J: Diagonal development: establishment of the anal axis in the ctenophore Mnemiopsis leidyi. Biol Bull 1995, 189(2):190-192.
  • [16]Schnitzler CE, Pang K, Powers ML, Reitzel AM, Ryan JF, Simmons D, Tada T, Park M, Gupta J, Brooks SY, Blakesley RW, Yokoyama S, Haddock SHD, Martindale MQ, Baxevanis AD: Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes. BMC Biol 2012, 10(1):107. BioMed Central Full Text
  • [17]Martindale MQ, Hejnol A: A developmental perspective: changes in the position of the blastopore during bilaterian evolution. Dev Cell 2009, 17(2):162-174.
  • [18]Freeman G: The role of cleavage in the localization of developmental potential in the Ctenophore Mnemiopsis leidyi. Dev Biol 1976, 49(1):143-177.
  • [19]Reverberi G, Ortolani G: On the origin of the ciliated plates and of the mesoderm in the ctenophores. Acta Embryol Morph Exp 1963, 6:175-190.
  • [20]Henry JQ, Martindale MQ: Multiple inductive signals are involved in the development of the ctenophore Mnemiopsis leidyi. Dev Biol 2001, 238:40-46.
  • [21]Pang K, Martindale MQ: Comb jellies (Ctenophora): a model for basal metazoan evolution and development. Cold Spring Harb Protoc 2008, 2008(11):106. pdb. emo
  • [22]Sanger J, Holtzer H: Cytochalasin B: effects on cell morphology, cell adhesion, and mucopolysaccharide synthesis. Proc Natl Acad Sci 1972, 69(1):253-257.
  • [23]Tamotsu S, Samejima M, Suzuki N, Morita Y: Three-dimensional reconstruction of serotonin-immunoreactive photoreceptors in the pineal organ of the river lamprey, Lampetra japonica. Biol Signals 1997, 6(4–6):184-190.
  • [24]Haddock SH, Case JF: Not all ctenophores are bioluminescent: Pleurobrachia. Biol Bull 1995, 189(3):356-362.
  • [25]Moore AR: Luminescence in Mnemiopsis. J Gen Physiol 1924, 6(4):403-412.
  • [26]Anctil M: Ultrastructure of the luminescent system of the ctenophore Mnemiopsis leidyi. Cell Tissue Res 1985, 242(2):333-340.
  • [27]Ward WW, Seliger H: Properties of mnemiopsin and berovin, calcium-activated photoproteins from the ctenophores Mnemiopsis species and Beroe ovata. Biochemistry 1974, 13(7):1500-1510.
  • [28]Perry RP, Kelley DE: Inhibition of RNA synthesis by actinomycin D: characteristic dose–response of different RNA species. J Cell Physiol 1970, 76(2):127-139.
  • [29]Bensaude O: Inhibiting eukaryotic transcription. Which compound to choose? How to evaluate its activity? Transcription 2011, 2(3):103-108.
  • [30]Nathans D: Puromycin inhibition of protein synthesis: incorporation of puromycin into peptide chains. Proc Natl Acad Sci U S A 1964, 51(4):585.
  • [31]Ikegami S, Taguchi T, Ohashi M, Oguro M, Nagano H, Mano Y: Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-α. Adv Physiol Educ 1978, 275:458-460.
  • [32]Johnstone O, Lasko P: Translational regulation and RNA localization in Drosophila oocytes and embryos. Annu Rev Genet 2001, 35(1):365-406.
  • [33]Davidson EH: How embryos work: a comparative view of diverse modes of cell fate specification. Development 1990, 108(3):365-389.
  • [34]Strome S, Lehmann R: Germ versus soma decisions: lessons from flies and worms. Science 2007, 316(5823):392-393.
  • [35]Angerer LM, Angerer RC: 4 patterning the sea urchin embryo: Gene regulatory networks, signaling pathways, and cellular interactions. Curr Top Dev Biol 2003, 53:159-198.
  • [36]Weitzel HE, Illies MR, Byrum CA, Xu R, Wikramanayake AH, Ettensohn CA: Differential stability of β-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled. Development 2004, 131(12):2947-2956.
  • [37]Leonard JD, Ettensohn CA: Analysis of dishevelled localization and function in the early sea urchin embryo. Dev Biol 2007, 306(1):50-65.
  • [38]Kumburegama S, Wijesena N, Wikramanayake AH: Detecting expression patterns of Wnt pathway components in Nematostella vectensis embryos. Meth Mol Biol 2008, 469:55-67.
  • [39]Logan CY, Miller JR, Ferkowicz MJ, McClay DR: Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. Development 1999, 126(2):345-357.
  • [40]Van Den Biggelaar JAM: Development of dorsoventral polarity and mesentoblast determination in Patella vulgata. J Morphol 1977, 154:157-186.
  • [41]Martindale MQ, Doe CQ, Morrill JB: The role of animal-vegetal interaction with respect to the determination of dorsoventral polarity in the equal-cleaving spiralian, Lymnaea palustris. Wilhelm Roux's Arch Dev Biol 1985, 194(5):281-295.
  • [42]Henry JJ: Conserved mechanism of dorsoventral axis determination in equal-cleaving spiralians. Dev Biol 2002, 248(2):343-355.
  • [43]Dorresteijn AWC, Bornewasser H, Fischer A: A correlative study of experimentally changed first cleavage and Janus development in the trunk of Platynereis dumerilii (Annelida, Polychaeta). Roux’s Arch Dev Biol 1987, 196:51-58.
  • [44]Rosenberg MI, Lynch JA, Desplan C: Heads and tails: evolution of antero-posterior patterning in insects. Biochim Biophys Acta – Gene Regul Mech 2009, 1789(4):333-342.
  • [45]Lall S, Ludwig MZ, Patel NH: Nanos plays a conserved role in axial patterning outside of the Diptera. Curr Biol 2003, 13(3):224-229.
  • [46]Porcher A, Dostatni N: The bicoid morphogen system. Curr Biol 2010, 20(5):R249-R254.
  • [47]Speksnijder JE, Terasaki M, Hage WJ, Jaffe LF, Sardet C: Polarity and reorganization of the endoplasmic reticulum during fertilization and ooplasmic segregation in the ascidian egg. J Cell Biol 1993, 120(6):1337-1346.
  • [48]Nishida H: Cell fate specification by localized cytoplasmic determinants and cell interactions in ascidian embryos. Int Rev Cytol 1997, 176:245-306.
  • [49]Sardet C, Paix A, Prodon F, Dru P, Chenevert J: From oocyte to 16-cell stage: cytoplasmic and cortical reorganizations that pattern the ascidian embryo. Dev Dyn 2007, 236(7):1716-1731.
  • [50]Ressom R, Dixon K: Relocation and reorganization of germ plasm in Xenopus embryos after fertilization. Development 1988, 103(3):507-518.
  • [51]Whitington PM, Dixon K: Quantitative studies of germ plasm and germ during early embryogenesis of Xenopus laevis. J Embryol Exp Morphol 1975, 33(1):57-74.
  • [52]Strome S, Wood WB: Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos. Cell 1983, 35(1):15-25.
  • [53]Wallenfang MR, Seydoux G: Polarization of the anterior-posterior axis of C. elegans is a microtubule-directed process. Nature 2000, 408(6808):89-92.
  • [54]Freeman G: The role of polarity in the development of the hydrozoan planula larva. Wilhelm Roux's Arch Dev Biol 1981, 190(3):168-184.
  • [55]Davidson EH, Cameron RA, Ransick A: Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms. Development 1998, 125(17):3269-3290.
  • [56]Kiyomoto M, Shirai H: The determinant for archenteron formation in starfish: co-culture of an animal egg fragment-derived cell cluster and a selected blastomere. Dev Growth Differ 1993, 35(1):99-105.
  • [57]Roegiers F, McDougall A, Sardet C: The sperm entry point defines the orientation of the calcium-induced contraction wave that directs the first phase of cytoplasmic reorganization in the ascidian egg. Development 1995, 121(10):3457-3466.
  • [58]Gönczy P, Rose LS: Asymmetric Cell Division and Axis Formation in the Embryo. WormBook; 2005:1-20.
  • [59]Cowan CR, Hyman AA: Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature 2004, 431(7004):92-96.
  • [60]Kingsley EP, Chan XY, Duan Y, Lambert JD: Widespread RNA segregation in a spiralian embryo. Evol Dev 2007, 9(6):527-539.
  • [61]Lambert JD, Nagy LM: Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavages. Nature 2002, 420(6916):682-686.
  • [62]Lee P, Kumburegama S, Marlow H, Martindale M, Wikramanayake A: Asymmetric developmental potential along the animal-vegetal axis in the anthozoan cnidarian, Nematostella vectensis, is mediated by Dishevelled. Dev Biol 2007, 310(1):169-186.
  • [63]Momose T, Derelle R, Houliston E: A maternally localised Wnt ligand required for axial patterning in the cnidarian Clytia hemisphaerica. Development 2008, 135(12):2105-2113.
  • [64]Chia W, Somers WG, Wang H: Drosophila neuroblast asymmetric divisions: cell cycle regulators, asymmetric protein localization, and tumorigenesis. J Cell Biol 2008, 180(2):267-272.
  • [65]Nance J, Zallen JA: Elaborating polarity: PAR proteins and the cytoskeleton. Development 2011, 138(5):799-809.
  • [66]Ephrussi A, Dickinson LK, Lehmann R: Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 1991, 66(1):37-50.
  • [67]Kim-Ha J, Smith JL, Macdonald PM: Oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 1991, 66(1):23-35.
  • [68]Riechmann V, Ephrussi A: Axis formation during Drosophila oogenesis. Curr Opin Genet Dev 2001, 11(4):374-383.
  • [69]Chang C-W, Nashchekin D, Wheatley L, Irion U, Dahlgaard K, Montague TG, Hall J, Johnston DS: Anterior-posterior axis specification in Drosophila oocytes: identification of novel bicoid and oskar mRNA localization factors. Genetics 2011, 188(4):883-896.
  • [70]Martin KC, Ephrussi A: mRNA localization: gene expression in the spatial dimension. Cell 2009, 136(4):719-730.
  • [71]Itoh T, Shinagawa A: Timing system for the start of gastrulation in the Xenopus embryo. Dev Growth Differ 2003, 45(3):261-273.
  • [72]Kominami T, Takata H: Timing of early developmental events in embryos of a tropical sea urchin Echinometra mathaei. Zoolog Sci 2003, 20(5):617-626.
  • [73]Kataoka Y, Mishina R, Fujiwara S: Mechanism of DNA replication-dependent transcriptional activation of the acetylcholinesterase gene in the Ciona intestinalis embryo. Dev Growth Differ 2009, 51(9):841-850.
  • [74]Scholtz G: Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda): germ band formation, segmentation, and early neurogenesis. Dev Genes Evol 1992, 202(1):36-48.
  • [75]Satoh N, Ikegami S: A definite number of aphidicolin-sensitive cell-cyclic events are required for acetylcholinesterase development in the presumptive muscle cells of the ascidian embryos. J Embryol Exp Morphol 1981, 61(1):1-13.
  • [76]Whittaker J: Segregation during ascidian embryogenesis of egg cytoplasmic information for tissue-specific enzyme development. Proc Natl Acad Sci 1973, 70(7):2096-2100.
  • [77]Whittaker J: Acetylcholinesterase development in extra cells caused by changing the distribution of myoplasm in ascidian embryos. J Embryol Exper Morphol 1980, 55(1):343-354.
  • [78]Whittaker J: Cell lineages and determinants of cell fate in development. Am Zool 1987, 27(2):607-622.
  • [79]Zalokar M: Effect of colchicine and cytochalasin B on ooplasmic segregation of ascidian eggs. Wilhelm Roux Arch Entwickl Mech Org 1974, 175(3):243-248.
  • [80]Deno T, Satoh N: Studies on the cytoplasmic determinant for muscle cell differentiation in ascidian embryos: an attempt at transplantation of the myoplasm. Dev Growth Differ 1984, 26(1):43-38.
  • [81]Reik W, Dean W, Walter J: Epigenetic reprogramming in mammalian development. Science 2001, 293(5532):1089-1093.
  • [82]Newport J, Kirschner M: A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 1982, 30(3):675-686.
  • [83]Edgar LG, McGhee JD: DNA synthesis and the control of embryonic gene expression in C. elegans. Cell 1988, 53(4):589-599.
  • [84]Tadros W, Lipshitz HD: The maternal-to-zygotic transition: a play in two acts. Development 2009, 136(18):3033-3042.
  • [85]Wang QT, Piotrowska K, Ciemerych MA, Milenkovic L, Scott MP, Davis RW, Zernicka-Goetz M: A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell 2004, 6(1):133-144.
  • [86]Wei Z, Angerer RC, Angerer LM: A database of mRNA expression patterns for the sea urchin embryo. Dev Biol 2006, 300(1):476-484.
  • [87]Leclère L, Jager M, Barreau C, Chang P, Le Guyader H, Manuel M, Houliston E: Maternally localized germ plasm mRNAs and germ cell/stem cell formation in the cnidarian Clytia. Dev Biol 2012, 364(2):236-248.
  • [88]Röttinger E, Dahlin P, Martindale MQ: A Framework for the establishment of a cnidarian gene regulatory network for “endomesoderm” specification: the inputs of β-catenin/TCF signaling. PLoS Genet 2012, 8(12):e1003164.
  • [89]Fritzenwanker JH, Genikhovich G, Kraus Y, Technau U: Early development and axis specification in the sea anemone Nematostella vectensis. Dev Biol 2007, 310(2):264-279.
  • [90]Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sorensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Mobjerg KR, Wheeler WC, Martindale MQ, Giribet G: Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 2008, 452:745-749.
  • [91]Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguñà J, Bailly X, Jondelius U: Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc Royal Soc B: Biol Sci 2009, 276(1677):4261-4270.
  • [92]Wallberg A, Thollesson M, Farris JS, Jondelius U: The phylogenetic position of the comb jellies (Ctenophora) and the importance of taxonomic sampling. Cladistics 2004, 20(6):558-578.
  • [93]Leukart R: Über die Morphologie und Verwandtschaftsverhältnisse der wirbellosen Tiere. Braunschweig: Vieweg und Sohn; 1848.
  • [94]Nosenko T, Schreiber F, Adamska M, Adamski M, Eitel M, Hammel J, Maldonado M, Müller WE, Nickel M, Schierwater B, Vacelet J, Wiens M, Wörheide G: Deep metazoan phylogeny: when different genes tell different stories. Mol Phylogenet Evol 2013, 67(1):223-233.
  • [95]Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N, Vacelet J, Renard E, Houliston E, Quéinnec E, Da Silva C, Wincker P, Le Guyader H, Leys S, Jackson DJ, Schreiber F, Erpenbeck D, Morgenstern B, Wörheide G, Manuel M: Phylogenomics revives traditional views on deep animal relationships. Curr Biol 2009, 19(8):706-712.
  • [96]Ax P: Multicellular Animals: A New Approach to the Phylogenetic Order in Nature, Volume 1. Berlin: Springer; 1996.
  • [97]Layden MJ, Meyer NP, Pang K, Seaver EC, Martindale MQ: Expression and phylogenetic analysis of the zic gene family in the evolution and development of metazoans. EvoDevo 2010, 1(1):12. BioMed Central Full Text
  • [98]Pang K, Ryan JF, Baxevanis AD, Martindale MQ: Evolution of the TGF-β signaling pathway and its potential role in the ctenophore. Mnemiopsis leidyi. PLoS One 2011, 6(9):e24152.
  • [99]Reitzel AM, Pang K, Ryan JF, Mullikin JC, Martindale MQ, Baxevanis AD, Tarrant AM: Nuclear receptors from the ctenophore Mnemiopsis leidyi lack a zinc-finger DNA-binding domain: lineage-specific loss or ancestral condition in the emergence of the nuclear receptor superfamily. EvoDevo 2011, 2(1):1-12. BioMed Central Full Text
  • [100]Ryan JF, Pang K, Mullikin JC, Martindale MQ, Baxevanis AD: The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa. EvoDevo 2010, 1(1):9. BioMed Central Full Text
  • [101]Maxwell EK, Ryan JF, Schnitzler CE, Browne WE, Baxevanis AD: MicroRNAs and essential components of the microRNA processing machinery are not encoded in the genome of the ctenophore Mnemiopsis leidyi. BMC Genomics 2012, 13(1):714. BioMed Central Full Text
  • [102]Pick K, Philippe H, Schreiber F, Erpenbeck D, Jackson D, Wrede P, Wiens M, Alié A, Morgenstern B, Manuel M, Wörheide G: Improved phylogenomic taxon sampling noticeably affects nonbilaterian relationships. Mol Biol Evol 2010, 27(9):1983-1987.
  • [103]Dorresteijn A: Competence of blastomeres for the expression of molecular tissue markers is acquired by diverse mechanisms in the embryo of Platynereis (Annelida). Dev Genes Evol 1993, 202(5):270-275.
  • [104]Nishida H: Specification of developmental fates in ascidian embryos: molecular approach to maternal determinants and signaling molecules. Int Rev Cytol 2002, 217:227-276.
  文献评价指标  
  下载次数:101次 浏览次数:8次