期刊论文详细信息
Clinical Proteomics
New biomarkers for primary mitral regurgitation
Marianne Fillet1  Marie-Paule Merville3  Patrizio Lancellotti6  Luc Pierard6  Philippe Kolh5  Etienne Cavalier3  Alain Colige2  Marc Radermecker7  Alexia Hulin2  Laura Dupont2  Caroline Le Goff3  Marie Moonen6  Julien Magne6  Céline Deroyer4 
[1] Laboratory for the Analysis of Medicines, CIRM, University of Liège, CHU Sart Tilman, Liège, 4000, Belgium;GIGA-Cancer, Laboratory of Connective Tissues Biology, University of Liège, CHU Sart Tilman, Liège, 4000, Belgium;Department of Clinical Chemistry, University of Liège, CHU Sart Tilman, Liège, 4000, Belgium;GIGA Proteomic Unit, Clinical Chemistry Laboratory, University of Liège, CHU Sart Tilman, Liège, 4000, Belgium;Department of Biomedical and Preclinical Sciences, University of Liège, CHU Sart Tilman, Liège, 4000, Belgium;GIGA Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart Tilman, Liège, 4000, Belgium;Department of Cardiovascular and Thoracic Surgery and Human Anatomy, University of Liège, CHU Sart Tilman, Liège, 4000, Belgium
关键词: Autophagy;    Lipid metabolism;    Biomarkers;    Mitral regurgitation;   
Others  :  1228933
DOI  :  10.1186/s12014-015-9097-2
 received in 2015-07-17, accepted in 2015-09-14,  发布年份 2015
PDF
【 摘 要 】

Background

Mitral regurgitation is a frequent valvular heart disease affecting around 2.5 % of the population with prevalence directly related to aging. Degeneration of mitral valve is broadly considered as a passive ongoing pathophysiological process and little is known about its physiological deregulation. The purpose of this study was to highlight new biomarkers of mitral regurgitation in order to decipher the underlying pathological mechanism as well as to allow the diagnosis and the monitoring of the disease.

Results

Modulation of various blood proteins expression was examined in patients suffering from different grades of mitral regurgitation (mild, moderate and severe) compared to healthy controls. To this end, several routine clinical assays and the multi analyte profile technology targeting 184 proteins were used. High-density lipoprotein, apolipoprotein-A1, haptoglobin and haptoglobin-α2 chain levels significantly decreased proportionally to the degree of mitral regurgitation when compared to controls. High-density lipoprotein and apolipoprotein-A1 levels were associated with effective regurgitant orifice area and regurgitant volume. Apolipoprotein-A1 was an independent predictor of severe mitral regurgitation. Moreover, with ordinal logistic regression, apolipoprotein-A1 remained the only independent factor associated with mitral regurgitation. In addition, myxomatous mitral valves were studied by immunocytochemistry. We observed an increase of LC3, the marker of autophagy, in myxomatous mitral valves compared with healthy mitral valves.

Conclusion

These potential biomarkers of mitral regurgitation highlighted different cellular processes that could be modified in myxomatous degenerescence: reverse cholesterol transport, antioxidant properties and autophagy.

【 授权许可】

   
2015 Deroyer et al.

【 预 览 】
附件列表
Files Size Format View
20151020030322983.pdf 2025KB PDF download
Fig.5. 135KB Image download
Fig.4. 53KB Image download
Fig.3. 77KB Image download
Fig.2. 27KB Image download
Fig.1. 38KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

【 参考文献 】
  • [1]Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006; 368:1005-1011.
  • [2]Gupta V, Barzilla JE, Mendez JS, Stephens EH, Lee EL, Collard CD, Laucirica R, Weigel PH, Grande-Allen KJ. Abundance and location of proteoglycans and hyaluronan within normal and myxomatous mitral valves. Cardiovasc Pathol. 2009; 18:191-197.
  • [3]Fornes P, Heudes D, Fuzellier J-F, Tixier D, Bruneval P, Carpentier A. Correlation between clinical and histologic patterns of degenerative mitral valve insufficiency. Cardiovasc Pathol. 1999; 8:81-92.
  • [4]Rabkin E, Aikawa M, Stone JR, Fukumoto Y, Libby P, Schoen FJ. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation. 2001; 104:2525-2532.
  • [5]Walker GA, Masters KS, Shah DN, Anseth KS, Leinwand LA. Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circ Res. 2004; 95:253-260.
  • [6]Caira FC, Stock SR, Gleason TG, McGee EC, Huang J, Bonow RO, Spelsberg TC, McCarthy PM, Rahimtoola SH, Rajamannan NM. Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J Am Coll Cardiol. 2006; 47:1707-1712.
  • [7]Kyndt F, Gueffet J-P, Probst V, Jaafar P, Legendre A, Le Bouffant F, Toquet C, Roy E, McGregor L, Lynch SA, Newbury-Ecob R, Tran V, Young I, Trochu J-N, Le Marec H, Schott J-J. Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation. 2007; 115:40-49.
  • [8]Lardeux A, Kyndt F, Lecointe S, Le Marec H, Merot J, Schott J-J, Le Tourneau T, Probst V. Filamin-a-related myxomatous mitral valve dystrophy: genetic, echocardiographic and functional aspects. J Cardiovasc Transl Res. 2011; 4:748-756.
  • [9]Martinet W, Knaapen MWM, Kockx MM, De Meyer GRY. Autophagy in cardiovascular disease. Trends Mol Med. 2007; 13:482-491.
  • [10]Martinet W, Agostinis P, Vanhoecke B, Dewaele M, De Meyer GRY. Autophagy in disease: a double-edged sword with therapeutic potential. Clin Sci (Lond). 2009; 116:697-712.
  • [11]Chen M-C, Chang J-P, Wang Y-H, Liu W-H, Ho W-C, Chang H-W. Autophagy as a mechanism for myolysis of cardiomyocytes in mitral regurgitation. Eur J Clin Invest. 2011; 41:299-307.
  • [12]Magne J, Lancellotti P, Piérard LA. Exercise pulmonary hypertension in asymptomatic degenerative mitral regurgitation. Circulation. 2010; 122:33-41.
  • [13]Hulin A, Deroanne CF, Lambert CA, Dumont B, Castronovo V, Defraigne J-O, Nusgens BV, Radermecker MA, Colige AC. Metallothionein-dependent up-regulation of TGF-β2 participates in the remodelling of the myxomatous mitral valve. Cardiovasc Res. 2012; 93:480-489.
  • [14]Mizushima N. Autophagy: process and function. Genes Dev. 2007; 21:2861-2873.
  • [15]Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, Lowe GDO, Pepys MB, Gudnason V. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004; 350:1387-1397.
  • [16]Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994; 94:437-444.
  • [17]Hazen SL, Heinecke JW. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest. 1997; 99:2075-2081.
  • [18]Labarrere CA, Zaloga GP. C-reactive protein: from innocent bystander to pivotal mediator of atherosclerosis. Am J Med. 2004; 117:499-507.
  • [19]Wiviott SD, de Lemos JA, Morrow DA. Pathophysiology, prognostic significance and clinical utility of B-type natriuretic peptide in acute coronary syndromes. Clin Chim Acta. 2004; 346:119-128.
  • [20]Detaint D, Messika-Zeitoun D, Avierinos J-F, Scott C, Chen H, Burnett JC, Enriquez-Sarano M. B-type natriuretic peptide in organic mitral regurgitation: determinants and impact on outcome. Circulation. 2005; 111:2391-2397.
  • [21]Mohty D, Pibarot P, Després J-P, Côté C, Arsenault B, Cartier A, Cosnay P, Couture C, Mathieu P. Association between plasma LDL particle size, valvular accumulation of oxidized LDL, and inflammation in patients with aortic stenosis. Arterioscler Thromb Vasc Biol. 2008; 28:187-193.
  • [22]Srinivasan SR, Berenson GS. Serum apolipoproteins A-I and B as markers of coronary artery disease risk in early life: the Bogalusa Heart Study. Clin Chem. 1995; 41:159-164.
  • [23]Sharrett AR, Ballantyne CM, Coady SA, Heiss G, Sorlie PD, Catellier D, Patsch W. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation. 2001; 104:1108-1113.
  • [24]Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, Jacobs DR, Bangdiwala S, Tyroler HA. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 1989; 79:8-15.
  • [25]Frank PG, Marcel YL. Apolipoprotein A-I: structure-function relationships. J Lipid Res. 2000; 41:853-872.
  • [26]Assmann G, von Eckardstein A, Funke H. High density lipoproteins, reverse transport of cholesterol, and coronary artery disease. Insights from mutations. Circulation. 1993; 87(4 Suppl):III28-34.
  • [27]Oram JF, Yokoyama S. Apolipoprotein-mediated removal of cellular cholesterol and phospholipids. J Lipid Res. 1996; 37:2473-2491.
  • [28]Delanghe J, Cambier B, Langlois M, De Buyzere M, Neels H, De Bacquer D, Van Cauwelaert P. Haptoglobin polymorphism, a genetic risk factor in coronary artery bypass surgery. Atherosclerosis. 1997; 132:215-219.
  • [29]Langlois MR, Delanghe JR. Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem. 1996; 42:1589-1600.
  • [30]Salvatore A, Cigliano L, Bucci EM, Corpillo D, Velasco S, Carlucci A, Pedone C, Abrescia P. Haptoglobin binding to apolipoprotein A-I prevents damage from hydroxyl radicals on its stimulatory activity of the enzyme lecithin-cholesterol acyl-transferase. Biochemistry. 2007; 46:11158-11168.
  • [31]Braeckman L, De Bacquer D, Delanghe J, Claeys L, De Backer G. Associations between haptoglobin polymorphism, lipids, lipoproteins and inflammatory variables. Atherosclerosis. 1999; 143:383-388.
  • [32]Eaton JW, Brandt P, Mahoney JR, Lee JT. Haptoglobin: a natural bacteriostat. Science. 1982; 215:691-693.
  • [33]Gutteridge JM. The antioxidant activity of haptoglobin towards haemoglobin-stimulated lipid peroxidation. Biochim Biophys Acta. 1987; 917:219-223.
  • [34]Levy AP. Genetics of diabetic cardiovascular disease: identification of a major susceptibility gene. Acta Diabetol. 2003; 40 Suppl 2:S330-S333.
  • [35]Oh SK, Pavlotsky N, Tauber AI. Specific binding of haptoglobin to human neutrophils and its functional consequences. J Leukoc Biol. 1990; 47:142-148.
  • [36]Sainger R, Grau JB, Branchetti E, Poggio P, Seefried WF, Field BC, Acker MA, Gorman RC, Gorman JH, Hargrove CW, Bavaria JE, Ferrari G. Human myxomatous mitral valve prolapse: role of bone morphogenetic protein 4 in valvular interstitial cell activation. J Cell Physiol. 2012; 227:2595-2604.
  • [37]Tan HT, Ling LH, Dolor-Torres MC, Yip JWL, Richards AM, Chung MCM. Proteomics discovery of biomarkers for mitral regurgitation caused by mitral valve prolapse. J Proteomics. 2013; 94:337-345.
  • [38]Mukherjee S, Jagadeeshaprasad MG, Banerjee T, Ghosh SK, Biswas M, Dutta S, Kulkarni MJ, Pattari S, Bandyopadhyay A. Proteomic analysis of human plasma in chronic rheumatic mitral stenosis reveals proteins involved in the complement and coagulation cascade. Clin Proteomics. 2014; 11:35. BioMed Central Full Text
  • [39]McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T, Izumo S. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation. 2004; 109:3050-3055.
  • [40]Zhang C-X, Pan S-N, Meng R-S, Peng C-Q, Xiong Z-J, Chen B-L, Chen G-Q, Yao F-J, Chen Y-L, Ma Y-D, Dong Y-G. Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats. Clin Exp Pharmacol Physiol. 2011; 38:55-62.
  • [41]Yan L, Vatner DE, Kim S-J, Ge H, Masurekar M, Massover WH, Yang G, Matsui Y, Sadoshima J, Vatner SF. Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci USA. 2005; 102:13807-13812.
  • [42]Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, Le V, Levine B, Rothermel BA, Hill JA. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest. 2007; 117:1782-1793.
  • [43]Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci. 2011; 36:30-38.
  • [44]Tamura K, Fukuda Y, Ishizaki M, Masuda Y, Yamanaka N, Ferrans VJ. Abnormalities in elastic fibers and other connective-tissue components of floppy mitral valve. Am Heart J. 1995; 129:1149-1158.
  • [45]Rabkin-Aikawa E, Farber M, Aikawa M, Schoen FJ. Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J Heart Valve Dis. 2004; 13:841-847.
  • [46]Togashi M, Tamura K, Nitta T, Ishizaki M, Sugisaki Y, Fukuda Y. Role of matrix metalloproteinases and their tissue inhibitor of metalloproteinases in myxomatous change of cardiac floppy valves. Pathol Int. 2007; 57:251-259.
  • [47]Cheng J, Ohsaki Y, Tauchi-Sato K, Fujita A, Fujimoto T. Cholesterol depletion induces autophagy. Biochem Biophys Res Commun. 2006; 351:246-252.
  • [48]Muller C, Salvayre R, Nègre-Salvayre A, Vindis C. Oxidized LDLs trigger endoplasmic reticulum stress and autophagy: prevention by HDLs. Autophagy. 2011; 7:541-543.
  • [49]Zhang Q, Yin H, Liu P, Zhang H, She M. Essential role of HDL on endothelial progenitor cell proliferation with PI3K/Akt/cyclin D1 as the signal pathway. Exp Biol Med (Maywood). 2010; 235:1082-1092.
  • [50]Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DCO, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 2010; 90:1383-1435.
  文献评价指标  
  下载次数:7次 浏览次数:2次