期刊论文详细信息
Journal of Nanobiotechnology
Chitosan functionalisation of gold nanoparticles encourages particle uptake and induces cytotoxicity and pro-inflammatory conditions in phagocytic cells, as well as enhancing particle interactions with serum components
Albert Duschl4  Ursula Lütz-Meindl1  Christian G. Huber3  Victor Puntes5  Martin Himly4  Eudald Casals2  Ngoc Tran2  Mirjam Zimmermann4  Ancuela Andosch1  Theresa Kristl3  Matthew S. P. Boyles4 
[1] Department of Cell Biology, Paris-Lodron University Salzburg, Salzburg, Austria;Institut Català de Nanotecnologia, Bellaterra, Barcelona, Spain;Department of Molecular Biology, Division of Chemistry and Bioanalytics, Paris-Lodron University Salzburg, Salzburg, Austria;Department of Molecular Biology, Division of Allergy and Immunology, Paris-Lodron University Salzburg, Hellbrunnerstr. 34, Salzburg, 5020, Austria;Institut Catala de Recerca i Estudis Avancats, Barcelona, Spain
关键词: Protein corona;    Pro-inflammatory responses;    Exocytosis;    Chitosan;    Charged gold nanoparticles;   
Others  :  1235037
DOI  :  10.1186/s12951-015-0146-9
 received in 2015-09-11, accepted in 2015-11-09,  发布年份 2015
PDF
【 摘 要 】

Background

Gold nanoparticles (AuNPs) are a popular choice for use in medical and biomedical research applications. With suitable functionalisation AuNPs can be applied in drug delivery systems, or can aid in disease diagnosis. One such functionalisation is with chitosan, which enables efficient interaction and permeation of cellular membranes, providing an effective adjuvant. As both AuNPs and chitosan have been shown to have low toxicity and high biocompatibility their proposed use in nanomedicine, either individually or combined, is expanding. However, further toxicological and immunological assessments of AuNP-chitosan conjugates are still needed. Therefore, we have evaluated how AuNP functionalisation with chitosan can affect uptake, cytotoxicity, and immunological responses within mononuclear cells, and influence the interaction of AuNPs with biomolecules within a complex biofluid. The AuNPs used were negatively charged through citrate-coating, or presented either low or high positive charge through chitosan-functionalisation. Uptake by THP-1 cells was assessed via transmission electron microscopy and electron energy loss spectroscopy, pro-inflammatory responses by ELISA and qRT-PCR, and cell death and viability via lactate dehydrogenase release and mitochondrial activity, respectively. Interactions of AuNPs with protein components of a frequently used in vitro cell culture medium supplement, foetal calf serum, were investigated using mass spectrometry.

Results

Although cells internalised all AuNPs, uptake rates and specific routes of intracellular trafficking were dependent upon chitosan-functionalisation. Accordingly, an enhanced immune response was found to be chitosan-functionalisation-dependent, in the form of CCL2, IL-1β, TNF-α and IL-6 secretion, and expression of IL- and NLRP3 mRNA. A corresponding increase in cytotoxicity was found in response to chitosan-coated AuNPs. Furthermore, chitosan-functionalisation was shown to induce an increase in unique proteins associating with these highly charged AuNPs.

Conclusions

It can be concluded that functionalisation of AuNPs with the perceived non-toxic biocompatible molecule chitosan at a high density can elicit functionalisation-dependent intracellular trafficking mechanisms and provoke strong pro-inflammatory conditions, and that a high affinity of these NP-conjugates for biomolecules may be implicit in these cellular responses.

【 授权许可】

   
2015 Boyles et al.

【 预 览 】
附件列表
Files Size Format View
20151228092733366.pdf 1961KB PDF download
Fig.6. 87KB Image download
Fig.5. 61KB Image download
Fig.4. 40KB Image download
Fig.3. 36KB Image download
Fig.2. 166KB Image download
Fig.1. 123KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

【 参考文献 】
  • [1]Daniel MC, Astruc D. Gold Nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004; 104:293-346.
  • [2]Weintraub K. Biomedicine: the new gold standard. Nature. 2013; 495:S14-S16.
  • [3]Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, Cao X, Zhang G, Shi X. PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials. 2012; 33:1107-1119.
  • [4]Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomed. 2011; 6:2859-2864.
  • [5]Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc. 2010; 132:4678-4684.
  • [6]Cheng Y, Meyers JD, Agnes RS, Doane TL, Kenney ME, Broome AM, Burda C, Basilion JP. Addressing brain tumors with targeted gold nanoparticles: a new gold standard for hydrophobic drug delivery? Small. 2011; 7:2301-2306.
  • [7]Huo S, Jin S, Ma X, Xue X, Yang K, Kumar A, Wang PC, Zhang J, Hu Z, Liang XJ. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano. 2014; 8:5852-5862.
  • [8]Niidome Y, Niidome T, Yamada S, Horiguchi Y, Takahashi H, Nakashima K. Pulsed-laser induced fragmentation and dissociation of DNA immobilized on gold nanoparticles. Mol Cryst Liq Cryst. 2006; 445:201-206.
  • [9]Barash O, Peled N, Hirsch FR, Haick H. Sniffing the unique “odor print” of non-small-cell lung cancer with gold nanoparticles. Small. 2009; 5:2618-2624.
  • [10]Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nano. 2009; 4:669-673.
  • [11]Lozano MV, Torrecilla D, Torres D, Vidal A, Domínguez F, Alonso MJ. Highly efficient system to deliver taxanes into tumor cells: docetaxel-loaded chitosan oligomer colloidal carriers. Biomacromolecules. 2008; 9:2186-2193.
  • [12]Amidi M, Hennink WE. Chitosan-based formulations of drugs, imaging agents and biotherapeutics. Adv Drug Deliv Rev. 2010; 62:1-2.
  • [13]Amidi M, Hennink WE. Chitosan-based formulations of drugs, imaging agents and biotherapeutics. Adv Drug Deliv Rev. 2010; 62:1-118.
  • [14]Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release. 2006; 115:216-225.
  • [15]Liu X. Chitosan-siRNA complex nanoparticles for gene silencing. J Biomed Eng. 2010; 27:97-101.
  • [16]Lee J, Yun KS, Choi CS, Shin SH, Ban HS, Rhim T, Lee SK, Lee KY. T cell-specific siRNA delivery using antibody-conjugated chitosan nanoparticles. Bioconjugate Chem. 2012; 23:1174-1180.
  • [17]Leong KW, Mao HQ, Truong-Le VL, Roy K, Walsh SM, August JT. DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release. 1998; 53:183-193.
  • [18]Corsi K, Chellat F, Yahia LH, Fernandes JC. Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. Biomaterials. 2003; 24:1255-1264.
  • [19]Zhang N, Li J, Jiang W, Ren C, Li J, Xin J, Li K. Effective protection and controlled release of insulin by cationic β-cyclodextrin polymers from alginate/chitosan nanoparticles. Int J Pharm. 2010; 393:213-219.
  • [20]Kim JH, Kim YS, Park K, Kang E, Lee S, Nam HY, Kim K, Park JH, Chi DY, Park RW et al.. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials. 2008; 29:1920-1930.
  • [21]Jeong YI, Jin SG, Kim IY, Pei J, Wen M, Jung TY, Moon KS, Jung S. Doxorubicin-incorporated nanoparticles composed of poly(ethylene glycol)-grafted carboxymethyl chitosan and antitumor activity against glioma cells in vitro. Colloids Surf B. 2010; 79:149-155.
  • [22]Li F, Li J, Wen X, Zhou S, Tong X, Su P, Li H, Shi D. Anti-tumor activity of paclitaxel-loaded chitosan nanoparticles: an in vitro study. Mater Sci Eng C. 2009; 29:2392-2397.
  • [23]Chen Z, Wang Z, Chen X, Xu H, Liu J. Chitosan-capped gold nanoparticles for selective and colorimetric sensing of heparin. J Nanopart Res. 2013; 15:1-9.
  • [24]Kang X, Pang G, Chen Q, Liang X. Fabrication of Bacillus cereus electrochemical immunosensor based on double-layer gold nanoparticles and chitosan. Sens Actuators B Chem. 2013; 177:1010-1016.
  • [25]Malathi S, Balakumaran MD, Kalaichelvan PT, Balasubramanian S. Green synthesis of gold nanoparticles for controlled delivery. Adv Mater Lett. 2013; 4:933-940.
  • [26]Bhumkar D, Joshi H, Sastry M, Pokharkar V. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res. 2007; 24:1415-1426.
  • [27]Regiel-Futyra A, Kus-Liśkiewicz M, Sebastian V, Irusta S, Arruebo M, Stochel G, Kyzioł A. Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials. ACS Appl Mater Interfaces. 2015; 7:1087-1099.
  • [28]Ing LY, Zin NM, Sarwar A, Katas H. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater. 2012; 2012:9.
  • [29]Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006; 11:812-818.
  • [30]Ye JR, Chen L, Zhang Y, Zhang QC, Shen Q. Turning the chitosan surface from hydrophilic to hydrophobic by layer-by-layer electro-assembly. RSC Adv. 2014; 4:58200-58203.
  • [31]Nam HY, Kwon SM, Chung H, Lee SY, Kwon SH, Jeon H, Kim Y, Park JH, Kim J, Her S et al.. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2009; 135:259-267.
  • [32]Min KH, Park K, Kim YS, Bae SM, Lee S, Jo HG, Park R-W, Kim IS, Jeong SY, Kim K, Kwon IC. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release. 2008; 127:208-218.
  • [33]Wang B, He C, Tang C, Yin C. Effects of hydrophobic and hydrophilic modifications on gene delivery of amphiphilic chitosan based nanocarriers. Biomaterials. 2011; 32:4630-4638.
  • [34]Maity AR, Jana NR. Chitosan–cholesterol-based cellular delivery of anionic nanoparticles. J Phys Chem C. 2011; 115:137-144.
  • [35]Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 2010; 62:3-11.
  • [36]Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005; 21:10644-10654.
  • [37]Brandenberger C, Rothen-Rutishauser B, Mühlfeld C, Schmid O, Ferron GA, Maier KL, Gehr P, Lenz AG. Effects and uptake of gold nanoparticles deposited at the air–liquid interface of a human epithelial airway model. Toxicol Appl Pharmacol. 2010; 242:56-65.
  • [38]Gu YJ, Cheng J, Lin CC, Lam YW, Cheng SH, Wong WT. Nuclear penetration of surface functionalized gold nanoparticles. Toxicol Appl Pharmacol. 2009; 237:196-204.
  • [39]Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W. Size-dependent cytotoxicity of gold nanoparticles. Small. 2007; 3:1941-1949.
  • [40]Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ, Hussain SM. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale. 2011; 3:410-420.
  • [41]Hühn D, Kantner K, Geidel C, Brandholt S, De Cock I, Soenen SJH, Rivera_Gil P, Montenegro JM, Braeckmans K, Müllen K et al.. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano. 2013; 7:3253-3263.
  • [42]Bartneck M, Keul HA, Wambach M, Bornemann J, Gbureck U, Chatain N, Neuss S, Tacke F, Groll J, Zwadlo-Klarwasser G. Effects of nanoparticle surface-coupled peptides, functional endgroups, and charge on intracellular distribution and functionality of human primary reticuloendothelial cells. Nanomed Nanotechnol Biol Med. 2012; 8:1282-1292.
  • [43]Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem. 2004; 15:897-900.
  • [44]Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009; 8:543-557.
  • [45]Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA. What the cell “sees” in bionanoscience. J Am Chem Soc. 2010; 132:5761-5768.
  • [46]Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nano. 2012; 7:779-786.
  • [47]Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C et al.. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nano. 2013; 8:772-781.
  • [48]Moe SM. Disorders involving calcium, phosphorus, and magnesium. Prim Care Clin Off Pract. 2008; 35:215-237.
  • [49]Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006; 6:662-668.
  • [50]dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell Lines. PLoS One. 2011; 6:e24438.
  • [51]Chithrani BD, Chan WCW. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007; 7:1542-1550.
  • [52]Albanese A, Chan WCW. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano. 2011; 5:5478-5489.
  • [53]Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K, Nienhaus GU, Musyanovych A, Mailänder V, Landfester K, Simmet T. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano. 2011; 5:1657-1669.
  • [54]Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Comm. 2007; 353:26-32.
  • [55]Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005; 1:325-327.
  • [56]Fleischer CC, Payne CK. Nanoparticle surface charge mediates the cellular receptors used by protein-nanoparticle complexes. J Phys Chem B. 2012; 116:8901-8907.
  • [57]Ojea-Jiménez I, García-Fernández L, Lorenzo J, Puntes VF. Facile preparation of cationic gold nanoparticle-bioconjugates for cell penetration and nuclear targeting. ACS Nano. 2012; 6:7692-7702.
  • [58]Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, Rotello VM, Prakash YS, Mukherjee P. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 2010; 10:2543-2548.
  • [59]Ojea-Jiménez I, Puntes V. Instability of cationic gold nanoparticle bioconjugates: the role of citrate ions. J Am Chem Soc. 2009; 131:13320-13327.
  • [60]Lunov O, Syrovets T, Loos C, Nienhaus GU, Mailänder V, Landfester K, Rouis M, Simmet T. Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano. 2011; 5:9648-9657.
  • [61]Andrews NW. Regulated secretion of conventional lysosomes. Trends Cell Biol. 2000; 10:316-321.
  • [62]Gerasimenko JV, Gerasimenko OV, Petersen OH. Membrane repair: Ca 2+ -elicited lysosomal exocytosis. Curr Biol. 2001; 11:R971-R974.
  • [63]Rodríguez A, Webster P, Ortego J, Andrews NW. Lysosomes behave as Ca 2+ -regulated exocytic vesicles in fibroblasts and epithelial cells. J Cell Biol. 1997; 137:93-104.
  • [64]Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V. Calcium and ROS-mediated activation of transcription factors and TNF-α cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol. 2004; 286:L344-L353.
  • [65]Brown DM, Hutchison L, Donaldson K, Stone V. The effects of PM10 particles and oxidative stress on macrophages and lung epithelial cells: modulating effects of calcium-signaling antagonists. Am J Physiol Lung Cell Mol Physiol. 2007; 292:L1444-L1451.
  • [66]Clift MJD, Boyles MSP, Brown DM, Stone V. An investigation into the potential for different surface-coated quantum dots to cause oxidative stress and affect macrophage cell signalling in vitro. Nanotoxicology. 2010; 4:139-149.
  • [67]Oh N, Park J-H. Surface chemistry of gold nanoparticles mediates their exocytosis in macrophages. ACS Nano. 2014; 8:6232-6241.
  • [68]Netea MG, Nold-Petry CA, Nold MF, Joosten LAB, Opitz B, van der Meer JHM, van de Veerdonk FL, Ferwerda G, Heinhuis B, Devesa I et al.. Differential requirement for the activation of the inflammasome for processing and release of IL-1β in monocytes and macrophages. Blood. 2009; 113:2324-2335.
  • [69]Bryan NB, Dorfleutner A, Rojanasakul Y, Stehlik C. Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. J Immunol. 2009; 182:3173-3182.
  • [70]Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008; 9:847-856.
  • [71]Bartneck M, Keul HA, Singh S, Czaja K, Bornemann J, Bockstaller M, Moeller M, Zwadlo-Klarwasser G, Groll J. Rapid uptake of gold nanorods by primary human blood phagocytes and immunomodulatory effects of surface chemistry. ACS Nano. 2010; 4:3073-3086.
  • [72]Bhattacharjee S, de Haan L, Evers N, Jiang X, Marcelis A, Zuilhof H, Rietjens I, Alink G. Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol. 2010; 7:25. BioMed Central Full Text
  • [73]Böhme S, Stärk HJ, Meißner T, Springer A, Reemtsma T, Kühnel D, Busch W. Quantification of Al2O3 nanoparticles in human cell lines applying inductively coupled plasma mass spectrometry (neb-ICP-MS, LA-ICP-MS) and flow cytometry-based methods. J Nanopart Res. 2014; 16:1-15.
  • [74]Mohamed B, Verma N, Prina-Mello A, Williams Y, Davies A, Bakos G, Tormey L, Edwards C, Hanrahan J, Salvati A et al.. Activation of stress-related signalling pathway in human cells upon SiO2 nanoparticles exposure as an early indicator of cytotoxicity. J Nanobiotechnol. 2011; 9:29. BioMed Central Full Text
  • [75]Choi S, Jang S, Park J, Jeong S, Park J, Ock K, Lee K, Yang S, Joo S-W, Ryu P, Lee S. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells. J Nanopart Res. 2012; 14:1-13.
  • [76]Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed. 2012; 7:5577-5591.
  • [77]Xia T, Kovochich M, Liong M, Zink JI, Nel AE. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano. 2008; 2:85-96.
  • [78]Hsiao IL, Gramatke AM, Joksimovic R, Sokolowski M, Gradzielski M, Haase A. Size and cell type dependent uptake of silica nanoparticles. J Nanomed Nanotechnol. 2014; 5:1-10.
  • [79]Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008; 320:674-677.
  • [80]Meunier E, Coste A, Olagnier D, Authier H, Lefèvre L, Dardenne C, Bernad J, Béraud M, Flahaut E, Pipy B. Double-walled carbon nanotubes trigger IL-1β release in human monocytes through Nlrp3 inflammasome activation. Nanomed Nanotechnol Biol Med. 2012; 8:987-995.
  • [81]Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I, Tschopp J. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc Natl Acad Sci. 2010; 107:19449-19454.
  • [82]Morishige T, Yoshioka Y, Inakura H, Tanabe A, Yao X, Narimatsu S, Monobe Y, Imazawa T, Tsunoda SI, Tsutsumi Y et al.. The effect of surface modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1β production, ROS production and endosomal rupture. Biomaterials. 2010; 31:6833-6842.
  • [83]Ma P, Liu HT, Wei P, Xu QS, Bai XF, Du YG, Yu C. Chitosan oligosaccharides inhibit LPS-induced over-expression of IL-6 and TNF-α in RAW264.7 macrophage cells through blockade of mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. Carbohydr Polym. 2011; 84:1391-1398.
  • [84]Bartczak D, Nitti S, Millar TM, Kanaras AG. Exocytosis of peptide functionalized gold nanoparticles in endothelial cells. Nanoscale. 2012; 4:4470-4472.
  • [85]Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes VF. Hardening of the nanoparticle-protein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles. Small. 2011; 7:3479-3486.
  • [86]Deng ZJ, Liang M, Toth I, Monteiro M, Minchin RF. Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology. 2013; 7:314-322.
  • [87]Walkey CD, Olsen JB, Song F, Liu R, Guo H, Olsen DWH, Cohen Y, Emili A, Chan WCW. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 2014; 8:2439-2455.
  • [88]Ji Z, Jin X, George S, Xia T, Meng H, Wang X, Suarez E, Zhang H, Hoek EMV, Godwin H et al.. Dispersion and stability optimization of TiO 2 nanoparticles in cell culture media. Environ Sci Technol. 2010; 44:7309-7314.
  • [89]Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V. Time Evolution of the Nanoparticle Protein Corona. ACS Nano. 2010; 4:3623-3632.
  • [90]Treuel L, Malissek M, Gebauer JS, Zellner R. The influence of surface composition of nanoparticles on their interactions with serum albumin. ChemPhysChem. 2010; 11:3093-3099.
  • [91]Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, Knauer SK, Bantz C, Nawroth T, Bier C et al.. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano. 2011; 5:7155-7167.
  • [92]Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nano. 2011; 6:39-44.
  • [93]Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev. 2002; 54:561-587.
  • [94]Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951; 11:55-75.
  • [95]Jana NR, Gearheart L, Murphy CJ. Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir. 2001; 17:6782-6786.
  • [96]Schlinkert P, Casals E, Boyles M, Tischler U, Hornig E, Tran N, Zhao J, Himly M, Riediker M, Oostingh G et al.. The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. J Nanobiotechnol. 2015; 13:1. BioMed Central Full Text
  • [97]Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucl Acids Res. 2001; 29:e45.
  • [98]Premstaller A, Oberacher H, Huber CG. High-performance liquid chromatography-electrospray ionization mass spectrometry of single- and double-stranded nucleic acids using monolithic capillary columns. Anal Chem. 2000; 72:4386-4393.
  文献评价指标  
  下载次数:64次 浏览次数:16次