期刊论文详细信息
Journal of Neuroinflammation
Neuronal self-injury mediated by IL-1β and MMP-9 in a cerebral palsy model of severe neonatal encephalopathy induced by immune activation plus hypoxia-ischemia
Guillaume Sébire1  Djordje Grbic2  Clémence Guiraut2  Mathilde Chevin2  Marie-Elsa Brochu2  Alexandre Savard2 
[1] McGill University, 2300 Tupper street, Montreal, H3H 1P3, QC, Canada;Laboratoire de Neurologie Pédiatrique, Université de Sherbrooke, Sherbrooke, QC, Canada
关键词: Neonatal encephalopathy;    Necroptosis;    Matrix metalloproteinase-9;    Interleukin-1;    Hypoxia-ischemia;    Chemokines;    Cerebral palsy;    Apoptosis;   
Others  :  1227087
DOI  :  10.1186/s12974-015-0330-8
 received in 2014-12-04, accepted in 2015-05-20,  发布年份 2015
PDF
【 摘 要 】

Background

Inflammation due to remote pathogen exposure combined to hypoxia/ischemia (HI) is one of the most common causes of neonatal encephalopathy affecting at-term or near-term human newborn, which will consequently develop cerebral palsy. Within term-equivalent rat brains exposed to systemic lipopolysaccharide (LPS) plus HI, it was previously showed that neurons produce IL-1β earlier than do glial cells, and that blocking IL-1 was neuroprotective. To further define the mechanisms whereby IL-1 exerts its neurotoxic effect, we hypothesize that IL-1β plays a pivotal role in a direct and/or indirect mechanistic loop of neuronal self-injury through matrix metalloproteinase (MMP)-9.

Methods

An established preclinical rat model of LPS+HI-induced neonatal encephalopathy was used. In situ hybridization, ELISA, and immunolabeling techniques were employed. Selective blocking compounds allowed addressing the respective roles of IL-1 and MMP-9.

Results

In LPS+HI-exposed forebrains, neuronal IL-1β was first detected in infarcted neocortical and striatal areas and later in glial cells of the adjacent white matter. Neuronal IL-1β played a key role: (i) in the early post-HI exacerbation of neuroinflammation and (ii) in generating both core and penumbral infarcted cerebral areas. Systemically administered IL-1 receptor antagonist (IL-1Ra) reached the brain and bound to the neocortical and deep gray neuronal membranes. Then, IL-1Ra down-regulated IL-1β mRNA and MMP-9 neuronal synthesis. Immediately post-HI, neuronal IL-1β up-regulated cytokine-induced neutrophil chemoattractant (CINC-1), monocyte chemoattractant protein-1 (MCP-1), and inducible nitric oxide synthase. MMP-9 would disrupt the blood–brain barrier, which, combined to CINC-1 up-regulation, would play a role in polymorphonuclear cell (PMN) infiltration into the LPS+HI-exposed brain. IL-1β blockade prevented PMN infiltration and oriented the phenotype of macrophagic/microglial cells towards anti-inflammatory and neurotrophic M2 profile. IL-1β increased the expression of activated caspase-3 and of receptor-interacting-protein (RIP)-3 within infarcted forebrain area. Such apoptotic and necroptotic pathway activations were prevented by IL-1Ra, as well as ensuing cerebral palsy-like brain damage and motor impairment.

Conclusions

This work uncovered a new paradigm of neuronal self-injury orchestrated by neuronal synthesis of IL-1β and MMP-9. In addition, it reinforced the translational neuroprotective potential of IL-1 blockers to alleviate human perinatal brain injuries.

【 授权许可】

   
2015 Savard et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150927092955706.pdf 3069KB PDF download
Fig. 10. 16KB Image download
Fig. 9. 20KB Image download
Fig. 8. 63KB Image download
Fig. 7. 101KB Image download
Fig. 6. 55KB Image download
Fig. 5. 47KB Image download
Fig. 4. 45KB Image download
Fig. 3. 50KB Image download
Fig. 2. 85KB Image download
Fig. 1. 108KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

【 参考文献 】
  • [1]Grether JK, Nelson KB: Maternal infection and cerebral palsy in infants of normal birth weight. JAMA 1997, 278:207-11.
  • [2]Wintermark P, Boyd T, Gregas MC, Labrecque M, Hansen A: Placental pathology in asphyxiated newborns meeting the criteria for therapeutic hypothermia. Am J Obstet Gynecol 2010, 203:579.
  • [3]Chau V, Poskitt KJ, McFadden DE, Bowen-Roberts T, Synnes A, Brant R, et al.: Effect of chorioamnionitis on brain development and injury in premature newborns. Ann Neurol 2009, 66:155-64.
  • [4]Patel SD, Pierce L, Ciardiello AJ, Vannucci SJ: Neonatal encephalopathy: pre-clinical studies in neuroprotection. Biochem Soc Trans 2014, 42:564-8.
  • [5]Girard S, Kadhim H, Beaudet N, Sarret P, Sebire G: Developmental motor deficits induced by combined fetal exposure to lipopolysaccharide and early neonatal hypoxia/ischemia: a novel animal model for cerebral palsy in very premature infants. Neuroscience 2009, 158:673-82.
  • [6]Ferriero DM: Neonatal brain injury. N Engl J Med 2004, 351:1985-95.
  • [7]Volpe JJ: Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 2009, 8:110-24.
  • [8]Aden U, Favrais G, Plaisant F, Winerdal M, Felderhoff-Mueser U, Lampa J, et al.: Systemic inflammation sensitizes the neonatal brain to excitotoxicity through a pro-/anti-inflammatory imbalance: key role of TNFalpha pathway and protection by etanercept. Brain Behav Immun 2010, 24:747-58.
  • [9]Eklind S, Mallard C, Leverin AL, Gilland E, Blomgren K, Mattsby-Baltzer I, et al.: Bacterial endotoxin sensitizes the immature brain to hypoxic–ischaemic injury. Eur J Neurosci 2001, 13:1101-6.
  • [10]Coumans AB, Middelanis JS, Garnier Y, Vaihinger HM, Leib SL, Von Duering MU, et al.: Intracisternal application of endotoxin enhances the susceptibility to subsequent hypoxic-ischemic brain damage in neonatal rats. Pediatr Res 2003, 53:770-5.
  • [11]Wang X, Stridh L, Li W, Dean J, Elmgren A, Gan L, et al.: Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner. J Immunol 2009, 183:7471-7.
  • [12]Larouche A, Roy M, Kadhim H, Tsanaclis AM, Fortin D, Sebire G: Neuronal injuries induced by perinatal hypoxic-ischemic insults are potentiated by prenatal exposure to lipopolysaccharide: animal model for perinatally acquired encephalopathy. Dev Neurosci 2005, 27:134-42.
  • [13]Towfighi J, Mauger D, Vannucci RC, Vannucci SJ: Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Brain Res Dev Brain Res 1997, 100:149-60.
  • [14]Brochu ME, Girard S, Lavoie K, Sebire G: Developmental regulation of the neuroinflammatory responses to LPS and/or hypoxia-ischemia between preterm and term neonates: an experimental study. J Neuroinflammation 2011, 8:55. BioMed Central Full Text
  • [15]Savard A, Lavoie K, Brochu ME, Grbic D, Lepage M, Gris D, et al.: Involvement of neuronal IL-1beta in acquired brain lesions in a rat model of neonatal encephalopathy. J Neuroinflammation 2013, 10:110. BioMed Central Full Text
  • [16]Relton JK, Martin D, Thompson RC, Russell DA: Peripheral administration of interleukin-1 receptor antagonist inhibits brain damage after focal cerebral ischemia in the rat. Exp Neurol 1996, 138:206-13.
  • [17]Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J: Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 2007, 27:2596-605.
  • [18]Borlongan CV, Cahill DW, Sanberg PR: Locomotor and passive avoidance deficits following occlusion of the middle cerebral artery. Physiol Behav 1995, 58:909-17.
  • [19]Chu K, Kim M, Park KI, Jeong SW, Park HK, Jung KH, et al.: Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res 2004, 1016:145-53.
  • [20]Schroder K, Tschopp J: The inflammasomes. Cell 2010, 140:821-32.
  • [21]Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009, 29:13435-44.
  • [22]Liu F, McCullough LD: Inflammatory responses in hypoxic ischemic encephalopathy. Acta Pharmacol Sin 2013, 34:1121-30.
  • [23]Svedin P, Hagberg H, Savman K, Zhu C, Mallard C: Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia. J Neurosci 2007, 27:1511-8.
  • [24]Jiang Z, Li C, Arrick DM, Yang S, Baluna AE, Sun H: Role of nitric oxide synthases in early blood–brain barrier disruption following transient focal cerebral ischemia. PLoS One 2014., 9Article ID e93134
  • [25]Allan SM, Tyrrell PJ, Rothwell NJ: Interleukin-1 and neuronal injury. Nat Rev Immunol 2005, 5:629-40.
  • [26]Tchelingerian JL, Le Saux F, Jacque C: Identification and topography of neuronal cell populations expressing TNF alpha and IL-1 alpha in response to hippocampal lesion. J Neurosci Res 1996, 43:99-106.
  • [27]Kadhim H, Tabarki B, De Prez C, Sebire G: Cytokine immunoreactivity in cortical and subcortical neurons in periventricular leukomalacia: are cytokines implicated in neuronal dysfunction in cerebral palsy? Acta Neuropathol 2003, 105:209-16.
  • [28]Sairanen TR, Lindsberg PJ, Brenner M, Siren AL: Global forebrain ischemia results in differential cellular expression of interleukin-1beta (IL-1beta) and its receptor at mRNA and protein level. J Cereb Blood Flow Metab 1997, 17:1107-20.
  • [29]Degos V, Peineau S, Nijboer C, Kaindl AM, Sigaut S, Favrais G, et al.: G protein-coupled receptor kinase 2 and group I metabotropic glutamate receptors mediate inflammation-induced sensitization to excitotoxic neurodegeneration. Ann Neurol 2013, 73:667-78.
  • [30]Martinez FO, Sica A, Mantovani A, Locati M: Macrophage activation and polarization. Front Biosci 2008, 13:453-61.
  • [31]Valentijn AJ, Zouq N, Gilmore AP: Anoikis. Biochem Soc Trans 2004, 32:421-5.
  • [32]Danjo S, Ishihara Y, Watanabe M, Nakamura Y, Itoh K: Pentylentetrazole-induced loss of blood–brain barrier integrity involves excess nitric oxide generation by neuronal nitric oxide synthase. Brain Res 2013, 1530:44-53.
  • [33]Kaiser WJ, Upton JW, Mocarski ES: Viral modulation of programmed necrosis. Curr Opin Virol 2013, 3:296-306.
  • [34]Yager J, Towfighi J, Vannucci RC: Influence of mild hypothermia on hypoxic-ischemic brain damage in the immature rat. Pediatr Res 1993, 34:525-9.
  • [35]Azzopardi D, Strohm B, Marlow N, Brocklehurst P, Deierl A, Eddama O, et al.: Effects of hypothermia for perinatal asphyxia on childhood outcomes. N Engl J Med 2014, 371:140-9.
  文献评价指标  
  下载次数:78次 浏览次数:21次