期刊论文详细信息
Cell & Bioscience
Regulation of TGF-β receptor activity
Ye-Guang Chen1  Fei Huang1 
[1] The State Key Laboratory of Biomembrane and Membrane Biotechnology, THU-PKU Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
关键词: degradation;    ubiquitination;    phosphorylation;    TGF-β receptor;   
Others  :  793579
DOI  :  10.1186/2045-3701-2-9
 received in 2011-12-13, accepted in 2012-03-15,  发布年份 2012
PDF
【 摘 要 】

TGF-β signaling regulates diverse cellular processes, including cell proliferation, differentiation, apoptosis, cell plasticity and migration. Its dysfunctions can result in various kinds of diseases, such as cancer and tissue fibrosis. TGF-β signaling is tightly regulated at different levels along the pathway, and modulation of TGF-β receptor activity is a critical step for signaling regulation. This review focuses on our recent understanding of regulation of TGF-β receptor activity.

【 授权许可】

   
2012 Huang and Chen; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705053038363.pdf 3491KB PDF download
Figure 6. 66KB Image download
Figure 5. 52KB Image download
Figure 4. 38KB Image download
Figure 3. 28KB Image download
Figure 2. 38KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Massague J, Blain SW, Lo RS: TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000, 103:295-309.
  • [2]Massague J, Chen YG: Controlling TGF-beta signaling. Genes Dev 2000, 14:627-644.
  • [3]Schmierer B, Hill CS: TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 2007, 8:970-982.
  • [4]Wrighton KH, Lin X, Feng XH: Phospho-control of TGF-beta superfamily signaling. Cell Res 2009, 19:8-20.
  • [5]Chen X, Xu L: Mechanism and Regulation of Nucleocytoplasmic Trafficking of Smad. Cell Biosci 2011, 1:40. BioMed Central Full Text
  • [6]Tang LY, Zhang YE: Non-degradative ubiquitination in Smad-dependent TGF-beta signaling. Cell Biosci 2011, 1:43. BioMed Central Full Text
  • [7]Massague J, Seoane J, Wotton D: Smad transcription factors. Genes Dev 2005, 19:2783-2810.
  • [8]Feng XH, Derynck R: Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 2005, 21:659-693.
  • [9]Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M, Mummery C, Arthur HM, ten Dijke P: Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 2004, 23:4018-4028.
  • [10]Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C, Karlsson S, ten Dijke P: Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell 2003, 12:817-828.
  • [11]Sieber C, Kopf J, Hiepen C, Knaus P: Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev 2009, 20:343-355.
  • [12]Miyazono K, Maeda S, Imamura T: BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 2005, 16:251-263.
  • [13]Walton KL, Makanji Y, Harrison CA: New insights into the mechanisms of activin action and inhibition. Mol Cell Endocrinol 2011.
  • [14]Moustakas A, Heldin CH: Non-Smad TGF-beta signals. J Cell Sci 2005, 118:3573-3584.
  • [15]Derynck R, Zhang YE: Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003, 425:577-584.
  • [16]Zhang YE: Non-Smad pathways in TGF-beta signaling. Cell Res 2009, 19:128-139.
  • [17]Chapnick DA, Warner L, Bernet J, Rao T, Liu X: Partners in Crime: TGF-beta and MAPK pathways in cancer progression. Cell Biosci 2011, 1:42. BioMed Central Full Text
  • [18]Pardali E, Goumans MJ, ten Dijke P: Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 2010, 20:556-567.
  • [19]Lebrin F, Deckers M, Bertolino P, Ten Dijke P: TGF-beta receptor function in the endothelium. Cardiovasc Res 2005, 65:599-608.
  • [20]Daly AC, Randall RA, Hill CS: Transforming growth factor beta-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol Cell Biol 2008, 28:6889-6902.
  • [21]Liu IM, Schilling SH, Knouse KA, Choy L, Derynck R, Wang XF: TGFbeta-stimulated Smad1/5 phosphorylation requires the ALK5 L45 loop and mediates the pro-migratory TGFbeta switch. EMBO J 2009, 28:88-98.
  • [22]Wrighton KH, Lin X, Yu PB, Feng XH: Transforming Growth Factor {beta} Can Stimulate Smad1 Phosphorylation Independently of Bone Morphogenic Protein Receptors. J Biol Chem 2009, 284:9755-9763.
  • [23]Kang JS, Liu C, Derynck R: New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol 2009, 19:385-394.
  • [24]Luo K, Lodish HF: Positive and negative regulation of type II TGF-beta receptor signal transduction by autophosphorylation on multiple serine residues. EMBO J 1997, 16:1970-1981.
  • [25]Wieser R, Wrana JL, Massague J: GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the TGF-beta receptor complex. EMBO J 1995, 14:2199-2208.
  • [26]Souchelnytskyi S, ten Dijke P, Miyazono K, Heldin CH: Phosphorylation of Ser165 in TGF-beta type I receptor modulates TGF-beta1-induced cellular responses. EMBO J 1996, 15:6231-6240.
  • [27]Lawler S, Feng XH, Chen RH, Maruoka EM, Turck CW, Griswold-Prenner I, Derynck R: The type II transforming growth factor-beta receptor autophosphorylates not only on serine and threonine but also on tyrosine residues. J Biol Chem 1997, 272:14850-14859.
  • [28]Shi W, Sun C, He B, Xiong W, Shi X, Yao D, Cao X: GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor. J Cell Biol 2004, 164:291-300.
  • [29]Batut J, Schmierer B, Cao J, Raftery LA, Hill CS, Howell M: Two highly related regulatory subunits of PP2A exert opposite effects on TGF-beta/Activin/Nodal signalling. Development 2008, 135:2927-2937.
  • [30]Itoh S, ten Dijke P: Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol 2007, 19:176-184.
  • [31]Lonn P, Moren A, Raja E, Dahl M, Moustakas A: Regulating the stability of TGFbeta receptors and Smads. Cell Res 2009, 19:21-35.
  • [32]Yan X, Chen YG: Smad7: not only a regulator, but also a cross-talk mediator of TGF-beta signalling. Biochem J 2011, 434:1-10.
  • [33]Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K: Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 2001, 276:12477-12480.
  • [34]Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA Jr, Wrana JL, Falb D: The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 1997, 89:1165-1173.
  • [35]Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL: Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 2000, 6:1365-1375.
  • [36]Kuratomi G, Komuro A, Goto K, Shinozaki M, Miyazawa K, Miyazono K, Imamura T: NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor. Biochem J 2005, 386:461-470.
  • [37]Komuro A, Imamura T, Saitoh M, Yoshida Y, Yamori T, Miyazono K, Miyazawa K: Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1). Oncogene 2004, 23:6914-6923.
  • [38]Kowanetz M, Lonn P, Vanlandewijck M, Kowanetz K, Heldin CH, Moustakas A: TGFbeta induces SIK to negatively regulate type I receptor kinase signaling. J Cell Biol 2008, 182:655-662.
  • [39]Lallemand F, Seo SR, Ferrand N, Pessah M, L'Hoste S, Rawadi G, Roman-Roman S, Camonis J, Atfi A: AIP4 restricts transforming growth factor-beta signaling through a ubiquitination-independent mechanism. J Biol Chem 2005, 280:27645-27653.
  • [40]Ferrigno O, Lallemand F, Verrecchia F, L'Hoste S, Camonis J, Atfi A, Mauviel A: Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene 2002, 21:4879-4884.
  • [41]Wrighton KH, Lin X, Feng XH: Critical regulation of TGFbeta signaling by Hsp90. Proc Natl Acad Sci USA 2008, 105:9244-9249.
  • [42]Yan X, Zhang J, Pan L, Wang P, Xue H, Zhang L, Gao X, Zhao X, Ning Y, Chen YG: TSC-22 promotes transforming growth factor beta-mediated cardiac myofibroblast differentiation by antagonizing Smad7 activity. Mol Cell Biol 2011, 31:3700-3709.
  • [43]Zhang L, Zhou H, Su Y, Sun Z, Zhang H, Zhang L, Zhang Y, Ning Y, Chen YG, Meng A: Zebrafish Dpr2 inhibits mesoderm induction by promoting degradation of nodal receptors. Science 2004, 306:114-117.
  • [44]Su Y, Zhang L, Gao X, Meng F, Wen J, Zhou H, Meng A, Chen YG: The evolutionally conserved activity of Dapper2 in antagonizing TGF-beta signaling. FASEB J 2007, 21:682-690.
  • [45]Hao X, Wang Y, Ren F, Zhu S, Ren Y, Jia B, Li YP, Shi Y, Chang Z: SNX25 regulates TGF-beta signaling by enhancing the receptor degradation. Cell Signal 2011, 23:935-946.
  • [46]Wrana JL, Attisano L, Wieser R, Ventura F, Massague J: Mechanism of activation of the TGF-beta receptor. Nature 1994, 370:341-347.
  • [47]Chen RH, Derynck R: Homomeric interactions between type II transforming growth factor-beta receptors. J Biol Chem 1994, 269:22868-22874.
  • [48]Gilboa L, Wells RG, Lodish HF, Henis YI: Oligomeric structure of type I and type II transforming growth factor beta receptors: homodimers form in the ER and persist at the plasma membrane. J Cell Biol 1998, 140:767-777.
  • [49]Henis YI, Moustakas A, Lin HY, Lodish HF: The types II and III transforming growth factor-beta receptors form homo-oligomers. J Cell Biol 1994, 126:139-154.
  • [50]Zhang W, Jiang Y, Wang Q, Ma X, Xiao Z, Zuo W, Fang X, Chen YG: Single-molecule imaging reveals transforming growth factor-beta-induced type II receptor dimerization. Proc Natl Acad Sci USA 2009, 106:15679-15683.
  • [51]Zhang W, Yuan J, Yang Y, Xu L, Wang Q, Zuo W, Fang X, Chen YG: Monomeric type I and type III transforming growth factor-beta receptors and their dimerization revealed by single-molecule imaging. Cell Res 2010, 20:1216-1223.
  • [52]Lopez-Casillas F, Wrana JL, Massague J: Betaglycan presents ligand to the TGF beta signaling receptor. Cell 1993, 73:1435-1444.
  • [53]Eickelberg O, Centrella M, Reiss M, Kashgarian M, Wells RG: Betaglycan inhibits TGF-beta signaling by preventing type I-type II receptor complex formation. Glycosaminoglycan modifications alter betaglycan function. J Biol Chem 2002, 277:823-829.
  • [54]Esparza-Lopez J, Montiel JL, Vilchis-Landeros MM, Okadome T, Miyazono K, Lopez-Casillas F: Ligand binding and functional properties of betaglycan, a co-receptor of the transforming growth factor-beta superfamily. Specialized binding regions for transforming growth factor-beta and inhibin A. J Biol Chem 2001, 276:14588-14596.
  • [55]Bilandzic M, Stenvers KL: Betaglycan: a multifunctional accessory. Mol Cell Endocrinol 2011, 339:180-189.
  • [56]Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massague J, Niehrs C: Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature 1999, 401:480-485.
  • [57]Jin W, Kim BC, Tognon C, Lee HJ, Patel S, Lannon CL, Maris JM, Triche TJ, Sorensen PH, Kim SJ: The ETV6-NTRK3 chimeric tyrosine kinase suppresses TGF-beta signaling by inactivating the TGF-beta type II receptor. Proc Natl Acad Sci USA 2005, 102:16239-16244.
  • [58]Yan X, Lin Z, Chen F, Zhao X, Chen H, Ning Y, Chen YG: Human BAMBI cooperates with Smad7 to inhibit transforming growth factor-beta signaling. J Biol Chem 2009, 284:30097-30104.
  • [59]Chen YG, Liu F, Massague J: Mechanism of TGFbeta receptor inhibition by FKBP12. EMBO J 1997, 16:3866-3876.
  • [60]Huse M, Muir TW, Xu L, Chen YG, Kuriyan J, Massague J: The TGF beta receptor activation process: an inhibitor- to substrate-binding switch. Mol Cell 2001, 8:671-682.
  • [61]Huse M, Chen YG, Massague J, Kuriyan J: Crystal structure of the cytoplasmic domain of the type I TGF beta receptor in complex with FKBP12. Cell 1999, 96:425-436.
  • [62]Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL: SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 1998, 95:779-791.
  • [63]Geiss-Friedlander R, Melchior F: Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 2007, 8:947-956.
  • [64]Kang JS, Saunier EF, Akhurst RJ, Derynck R: The type I TGF-beta receptor is covalently modified and regulated by sumoylation. Nat Cell Biol 2008, 10:654-664.
  • [65]Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin CH, Landstrom M: The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 2008, 10:1199-1207.
  • [66]Galliher AJ, Schiemann WP: Src phosphorylates Tyr284 in TGF-beta type II receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res 2007, 67:3752-3758.
  • [67]Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J, Smith SM, Derynck R: TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J 2007, 26:3957-3967.
  • [68]Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE: TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 2008, 31:918-924.
  • [69]Sapkota G, Alarcon C, Spagnoli FM, Brivanlou AH, Massague J: Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol Cell 2007, 25:441-454.
  • [70]Ray BN, Lee NY, How T, Blobe GC: ALK5 phosphorylation of the endoglin cytoplasmic domain regulates Smad1/5/8 signaling and endothelial cell migration. Carcinogenesis 2010, 31:435-441.
  • [71]Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL: Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 2005, 307:1603-1609.
  • [72]Mu Y, Sundar R, Thakur N, Ekman M, Gudey SK, Yakymovych M, Hermansson A, Dimitriou H, Bengoechea-Alonso MT, Ericsson J, et al.: TRAF6 ubiquitinates TGFbeta type I receptor to promote its cleavage and nuclear translocation in cancer. Nat Commun 2011, 2:330.
  • [73]Liu C, Xu P, Lamouille S, Xu J, Derynck R: TACE-mediated ectodomain shedding of the type I TGF-beta receptor downregulates TGF-beta signaling. Mol Cell 2009, 35:26-36.
  • [74]Chen YG: Endocytic regulation of TGF-beta signaling. Cell Res 2009, 19:58-70.
  • [75]Le Roy C, Wrana JL: Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 2005, 6:112-126.
  • [76]Kardassis D, Murphy C, Fotsis T, Moustakas A, Stournaras C: Control of transforming growth factor beta signal transduction by small GTPases. Febs J 2009, 276:2947-2965.
  • [77]Anders RA, Dore JJ Jr, Arline SL, Garamszegi N, Leof EB: Differential requirement for type I and type II transforming growth factor beta receptor kinase activity in ligand-mediated receptor endocytosis. J Biol Chem 1998, 273:23118-23125.
  • [78]Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL: Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 2003, 5:410-421.
  • [79]Yao D, Ehrlich M, Henis YI, Leof EB: Transforming growth factor-beta receptors interact with AP2 by direct binding to beta2 subunit. Mol Biol Cell 2002, 13:4001-4012.
  • [80]Lu Z, Murray JT, Luo W, Li H, Wu X, Xu H, Backer JM, Chen YG: Transforming growth factor beta activates Smad2 in the absence of receptor endocytosis. J Biol Chem 2002, 277:29363-29368.
  • [81]Hayes S, Chawla A, Corvera S: TGF beta receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J Cell Biol 2002, 158:1239-1249.
  • [82]Hu Y, Chuang JZ, Xu K, McGraw TG, Sung CH: SARA, a FYVE domain protein, affects Rab5-mediated endocytosis. J Cell Sci 2002, 115:4755-4763.
  • [83]Chen YG, Wang Z, Ma J, Zhang L, Lu Z: Endofin, a FYVE domain protein, interacts with Smad4 and facilitates transforming growth factor-beta signaling. J Biol Chem 2007, 282:9688-9695.
  • [84]Mitchell H, Choudhury A, Pagano RE, Leof EB: Ligand-dependent and -independent transforming growth factor-beta receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Mol Biol Cell 2004, 15:4166-4178.
  • [85]Penheiter SG, Singh RD, Repellin CE, Wilkes MC, Edens M, Howe PH, Pagano RE, Leof EB: Type II transforming growth factor-beta receptor recycling is dependent upon the clathrin adaptor protein Dab2. Mol Biol Cell 2010, 21:4009-4019.
  • [86]Ma X, Wang Q, Jiang Y, Xiao Z, Fang X, Chen YG: Lateral diffusion of TGF-beta type I receptor studied by single-molecule imaging. Biochem Biophys Res Commun 2007, 356:67-71.
  • [87]Luga V, McLean S, Le Roy C, O'Connor-McCourt M, Wrana JL, Di Guglielmo GM: The extracellular domain of the TGFbeta type II receptor regulates membrane raft partitioning. Biochem J 2009, 421:119-131.
  • [88]Zhang XL, Topley N, Ito T, Phillips A: Interleukin-6 regulation of transforming growth factor (TGF)-beta receptor compartmentalization and turnover enhances TGF-beta1 signaling. J Biol Chem 2005, 280:12239-12245.
  • [89]Atfi A, Dumont E, Colland F, Bonnier D, L'Helgoualc'h A, Prunier C, Ferrand N, Clement B, Wewer UM, Theret N: The disintegrin and metalloproteinase ADAM12 contributes to TGF-beta signaling through interaction with the type II receptor. J Cell Biol 2007, 178:201-208.
  • [90]Chen CL, Huang SS, Huang JS: Cellular heparan sulfate negatively modulates transforming growth factor-beta1 (TGF-beta1) responsiveness in epithelial cells. J Biol Chem 2006, 281:11506-11514.
  • [91]Ito T, Williams JD, Fraser DJ, Phillips AO: Hyaluronan regulates transforming growth factor-beta1 receptor compartmentalization. J Biol Chem 2004, 279:25326-25332.
  • [92]Razani B, Zhang XL, Bitzer M, von Gersdorff G, Bottinger EP, Lisanti MP: Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem 2001, 276:6727-6738.
  • [93]Bizet AA, Liu K, Tran-Khanh N, Saksena A, Vorstenbosch J, Finnson KW, Buschmann MD, Philip A: The TGF-beta co-receptor, CD109, promotes internalization and degradation of TGF-beta receptors. Biochim Biophys Acta 2011, 1813:742-753.
  • [94]Bizet AA, Tran-Khanh N, Saksena A, Liu K, Buschmann MD, Philip A: CD109-mediated degradation of TGF-beta receptors and inhibition of TGF-beta responses involve regulation of SMAD7 and Smurf2 localization and function. J Cell Biochem 2011.
  • [95]Zuo W, Chen YG: Specific activation of mitogen-activated protein kinase by transforming growth factor-beta receptors in lipid rafts is required for epithelial cell plasticity. Mol Biol Cell 2009, 20:1020-1029.
  • [96]Bandyopadhyay B, Han A, Dai J, Fan J, Li Y, Chen M, Woodley DT, Li W: TbetaRI/Alk5-independent TbetaRII signaling to ERK1/2 in human skin cells according to distinct levels of TbetaRII expression. J Cell Sci 2011, 124:19-24.
  • [97]Lee BI, Park SH, Kim JW, Sausville EA, Kim HT, Nakanishi O, Trepel JB, Kim SJ: MS-275, a histone deacetylase inhibitor, selectively induces transforming growth factor beta type II receptor expression in human breast cancer cells. Cancer Res 2001, 61:931-934.
  • [98]Ammanamanchi S, Brattain MG: Restoration of transforming growth factor-beta signaling through receptor RI induction by histone deacetylase activity inhibition in breast cancer cells. J Biol Chem 2004, 279:32620-32625.
  • [99]Huang W, Zhao S, Ammanamanchi S, Brattain M, Venkatasubbarao K, Freeman JW: Trichostatin A induces transforming growth factor beta type II receptor promoter activity and acetylation of Sp1 by recruitment of PCAF/p300 to a Sp1.NF-Y complex. J Biol Chem 2005, 280:10047-10054.
  • [100]Osada H, Tatematsu Y, Sugito N, Horio Y, Takahashi T: Histone modification in the TGFbetaRII gene promoter and its significance for responsiveness to HDAC inhibitor in lung cancer cell lines. Mol Carcinog 2005, 44:233-241.
  • [101]Wang H, Liu J, Zong Y, Xu Y, Deng W, Zhu H, Liu Y, Ma C, Huang L, Zhang L, Qin C: miR-106b aberrantly expressed in a double transgenic mouse model for Alzheimer's disease targets TGF-beta type II receptor. Brain Res 2010, 1357:166-174.
  • [102]Wang Q, Huang Z, Xue H, Jin C, Ju XL, Han JD, Chen YG: MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood 2008, 111:588-595.
  文献评价指标  
  下载次数:45次 浏览次数:15次