Journal of Biomedical Science | |
Activation of protease-activated receptor 2 reduces glioblastoma cell apoptosis | |
Chunlei Tian1 Lei Wang1 Yuanxun Dong1 Xiongwei Wang1 Ran Luo1 | |
[1] Department of Neurosurgery, Institute of Neurosurgery, Yichang Central People’s Hospital & The First Clinical Medical College of Three Gorges University, Yichang, Hubei 443003, P.R. China | |
关键词: p53; Signal transducer and activator of transcription 3; Protease-activated receptor 2; Tryptase; Glioma; | |
Others : 820929 DOI : 10.1186/1423-0127-21-25 |
|
received in 2013-08-29, accepted in 2014-03-19, 发布年份 2014 | |
![]() |
【 摘 要 】
Background
The pathogenesis of glioma is unclear. The disturbance of the apoptosis process plays a critical role in glioma growth. Factors regulating the apoptosis process are to be further understood. This study aims to investigate the role of protease activated receptor-2 (PAR2) in regulation the apoptosis process in glioma cells.
Results
The results showed that U87 cells and human glioma tissue expressed PAR2. Exposure to tryptase, or the PAR2 active peptide, increased STAT3 phosphorylation in the radiated U87 cells, reduced U87 cell apoptosis, suppressed the expression of p53 in U87 cells.
Conclusions
Activation of PAR2 can reduce the radiated U87 cell apoptosis via modulating the expression of p53. The results implicate that PAR2 may be a novel therapeutic target in the treatment of glioma.
【 授权许可】
2014 Luo et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140712061600885.pdf | 928KB | ![]() |
|
Figure 4. | 50KB | Image | ![]() |
Figure 3. | 61KB | Image | ![]() |
Figure 2. | 74KB | Image | ![]() |
Figure 1. | 40KB | Image | ![]() |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Adamson C, Kanu OO, Mehta AI, Di C, Lin N, Mattox AK, Bigner DD: Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs 2009, 18:1061-1083.
- [2]Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, Agarwalla PK, Chheda MG, Campos B, Wang A, Brennan C, Ligon KL, Furnari F, Cavenee WK, Depinho RA, Chin L, Hahn WC: Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev 2012, 26:756-784.
- [3]Krysko DV, Vanden Berghe T, D'Herde K, Vandenabeele P: Apoptosis and necrosis: Detection, discrimination and phagocytosis. Methods 2008, 44:205-221.
- [4]Shukla S, Mahata S, Shishodia G, Pandey A, Tyagi A, Vishnoi K, Basir SF, Das BC, Bharti AC: Functional Regulatory Role of STAT3 in HPV16-Mediated Cervical Carcinogenesis. PLoS ONE 2013, 8:e67849.
- [5]Bending D, Zaccone P, Cooke A: Inflammation and type one diabetes. Int Immunol 2012, 24:339-346.
- [6]Lodewijk L, Prins AM, Kist JW, Valk GD, Kranenburg O, Rinkes IH, Vriens MR: The value of miRNA in diagnosing thyroid cancer: A systematic review. Cancer Biomarkers 2012, 11:229-238.
- [7]Coughlin SR: Thrombin signalling and protease-activated receptors. Nature 2000, 407:258-264.
- [8]Ahmad S, Ahmad A, Rancourt RC, Neeves KB, Loader JE, Hendry-Hofer T, Di Paola J, Reynolds SD, White CW: Tissue Factor Signals Airway Epithelial Basal Cell Survival via Coagulation and Protease-Activated Receptor Isoforms 1 and 2. Am J Respir Cell Mol Biol 2013, 48:94-104.
- [9]Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG: Isolation and In vitro Propagation of Tumorigenic Breast Cancer Cells with Stem/Progenitor Cell Properties. Cancer Res 2005, 65:5506-5511.
- [10]Ribatti D, Crivellato E: Mast cells, angiogenesis and cancer. Adv Exp Med Biol 2011, 716:270-288.
- [11]Ho Y, Tsao SW, Zeng M, Lui VW: STAT3 as a therapeutic target for Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma. Cancer Lett 2013, 330:141-149.
- [12]Malla RR, Gopinath S, Alapati K, Gorantla B, Gondi CS, Rao JS: uPAR and cathepsin B inhibition enhanced radiation-induced apoptosis in gliomainitiating cells. Neuro-Oncol 2012, 14:745-760.
- [13]Gruber HE, Watts JA, Hoelscher GL, Bethea SF, Ingram JA, Zinchenko NS, Hanley EN Jr: Mitochondrial gene expression in the human annulus: in-ávivo data from annulus cells and selectively harvested senescent annulus cells. Spine J 2011, 11:782-791.
- [14]Qu B, Al-Ansary D, Kummerow C, Hoth M, Schwarz EC: ORAI-mediated calcium influx in T cell proliferation, apoptosis and tolerance. Cell Calcium 2011, 50:261-269.
- [15]Yuan CH, Filippova M, Duerksen-Hughes P: Modulation of apoptotic pathways by human papillomaviruses (HPV): mechanisms and implications for therapy. Viruses 2012, 4:3831-3850.
- [16]Silver R, Silverman AJ, Vitković L, Lederhendler II: Mast cells in the brain: evidence and functional significance. Trends Neurosci 1996, 19:25-31.
- [17]Florenzano F, Bentivoglio M: Degranulation, density, and distribution of mast cells in the rat thalamus: A light and electron microscopic study in basal conditions and after intracerebroventricular administration of nerve growth factor. J Comp Neurol 2000, 424:651-669.
- [18]Hendrix S, Warnke K, Siebenhaar F, Peters EMJ, Nitsch R, Maurer M: The majority of brain mast cells in B10.PL mice is present in the hippocampal formation. Neurosci Lett 2006, 392:174-177.
- [19]Wilhelm M, King B, Silverman AJ, Silver R: Gonadal Steroids Regulate the Number and Activational State of Mast Cells in the Medial Habenula. Endocrinology 2000, 141:1178-1186.
- [20]Blirando K, Milliat F, Martelly I, Sabourin JC, Benderitter M: Francois As. Mast Cells Are an Essential Component of Human Radiation Proctitis and Contribute to Experimental Colorectal Damage in Mice. Am J Pathol 2011, 178:640-651.
- [21]Cirulli F, Pistillo L, de Acetis L, Alleva E, Aloe L: Increased Number of Mast Cells in the Central Nervous System of Adult Male Mice Following Chronic Subordination Stress. Brain Behav Immun 1998, 12:123-133.
- [22]Paus R, Theoharides TC, Arck PC: Neuroimmunoendocrine circuitry of the ‘brain-skin connection’. Trends Immunol 2006, 27:32-39.
- [23]Ma Y, Hwang RF, Logsdon CD, Ullrich SE: Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer. Cancer Res 2013, 2013:2013.
- [24]Khan MW, Keshavarzian A, Gounaris E, Melson JE, Cheon EC, Blatner NR, Chen ZE, Tsai FN, Lee G, Ryu H, Barrett TA, Bentrem DJ, Beckhove P, Khazaie K: PI3K/AKT Signaling Is Essential for Communication between Tissue-Infiltrating Mast Cells, Macrophages, and Epithelial Cells in Colitis-Induced Cancer. Clin Cancer Res 2013, 19:2342-2354.
- [25]Stechishin OD, Luchman HA, Ruan Y, Blough MD, Nguyen SA, Kelly JJ, Cairncross JG, Weiss S: On-target JAK2/STAT3 inhibition slows disease progression in orthotopic xenografts of human glioblastoma brain tumor stem cells. Neuro-Oncol 2013, 15:198-207.
- [26]Hu Y, Chen H, Duan C, Liu D, Qian L, Yang Z, Guo L, Song L, Yu M, Hu M, Shi M, Guo N: Deficiency of Erbin induces resistance of cervical cancer cells to anoikis in a STAT3-dependent manner. Oncogenesis 2013, 2:e52.
- [27]Carbajo-Pescador S, Ordoñez R, Benet M, Jover R, García-Palomo A, Mauriz JL, González-Gallego J: Inhibition of VEGF expression through blockade of Hif1[alpha] and STAT3 signalling mediates the anti-angiogenic effect of melatonin in HepG2 liver cancer cells. Br J Cancer 2013, 109:83-91.
- [28]Amin K: The role of mast cells in allergic inflammation. Respir Med 2012, 106:9-14.
- [29]Kobayashi R, Okamura S, Ohno T, Saito H, Mori M, Ra C, Okayama Y: Hyperexpression of FceRI and Toll-like receptor 4 in the intestinal mast cells of Crohn’s disease patients. Clin Immunol 2007, 125:149-158.
- [30]Müller K, Meineke V: Radiation-induced mast cell mediators differentially modulate chemokine release from dermal fibroblasts. J Dermatol Sci. 2011, 61:199-205.