期刊论文详细信息
Journal of Translational Medicine
Gastrointestinal delivery of propofol from fospropofol: its bioavailability and activity in rodents and human volunteers
Barbara S Slusher5  Rana Rais4  Ying Wu1  Bipin M Mistry2  James J Vornov3  Krystyna M Wozniak1 
[1] Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, The John G. Rangos, Sr. Building, 855 N. Wolfe Street, Baltimore 21205, MD, USA;Center for Veterinary Medicine, FDA, Derwood, MD, USA;Medpace, Cincinnati, OH, USA;Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA;Department of Psychiatry, and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
关键词: Hyperalgesia;    Pain;    Non-IV;    Prodrug;    Propofol;   
Others  :  1212314
DOI  :  10.1186/s12967-015-0526-9
 received in 2015-02-06, accepted in 2015-05-08,  发布年份 2015
PDF
【 摘 要 】

Background

Propofol is a safe and widely used intravenous anesthetic agent, for which additional clinical uses including treatment of migraine, nausea, pain and anxiety have been proposed (Vasileiou et al. Eur J Pharmacol 605:1–8, 2009). However, propofol suffers from several disadvantages as a therapeutic outside anesthesia including its limited aqueous solubility and negligible oral bioavailability. The purpose of the studies described here was to evaluate, in both animals and human volunteers, whether fospropofol (a water soluble phosphate ester prodrug of propofol) would provide higher propofol bioavailability through non-intravenous routes.

Methods

Fospropofol was administered via intravenous, oral and intraduodenal routes to rats. Pharmacokinetic and pharmacodynamic parameters were then evaluated. Based on the promising animal data we subsequently conducted an oral and intraduodenal pharmacokinetic/pharmacodynamic study in human volunteers.

Results

In rats, bioavailability of propofol from fospropofol delivered orally was found to be appreciable, in the order of around 20–70%, depending on dose. Availability was especially marked following fospropofol administration via the intraduodenal route, where bioavailability approximated 100%. Fospropofol itself was not appreciably bioavailable when administered by any route except for intravenous. Pharmacologic effect following oral fospropofol was confirmed by observation of sedation and alleviation of thermal hyperalgesia in the rat chronic constrictive injury model of neuropathic pain. The human data also showed systemic availability of propofol from fospropofol administration via oral routes, a hereto novel finding. Assessment of sedation in human volunteers was correlated with pharmacokinetic measurements.

Conclusions

These data suggest potential utility of oral administration of fospropofol for various therapeutic indications previously considered for propofol.

【 授权许可】

   
2015 Wozniak et al

【 预 览 】
附件列表
Files Size Format View
20150614090519183.pdf 1090KB PDF download
Figure5. 55KB Image download
Figure4. 35KB Image download
Figure3. 36KB Image download
Figure2. 79KB Image download
Figure1. 61KB Image download
【 图 表 】

Figure1.

Figure2.

Figure3.

Figure4.

Figure5.

【 参考文献 】
  • [1]Vasileiou I, Xanthos T, Koudouna E, Perrea D, Klonaris C, Katsargyris A et al.. Propofol: a review of its non-anaesthetic effects. Eur J Pharmacol. 2009; 605:1-8.
  • [2]Borgeat A, Wilder-Smith OH, Suter PM. The nonhypnotic therapeutic applications of propofol. Anesthesiology. 1994; 80:642-656.
  • [3]Orser BA, Wang LY, Pennefather PS, MacDonald JF. Propofol modulates activation and desensitization of GABAA receptors in cultured murine hippocampal neurons. J Neurosci. 1994; 14:7747-7760.
  • [4]Murugaiah KD, Hemmings HC. Effects of intravenous general anesthetics on [3H]GABA release from rat cortical synaptosomes. Anesthesiology. 1998; 89:919-928.
  • [5]Pain L, Oberling P, Launoy A, Di Scala G. Effect of nonsedative doses of propofol on an innate anxiogenic situation in rats. Anesthesiology. 1999; 90:191-196.
  • [6]Kurt M, Bilge SS, Kukula O, Celik S, Kesim Y. Anxiolytic-like profile of propofol, a general anesthetic, in the plus-maze test in mice. Pol J Pharmacol. 2003; 55:973-977.
  • [7]Krusz JC, Scott V, Belanger J. Intravenous propofol: unique effectiveness in treating intractable migraine. Headache. 2000; 40:224-230.
  • [8]Soleimanpour H, Ghafouri RR, Taheraghdam A, Aghamohammadi D, Negargar S, Golzari SE et al.. Effectiveness of intravenous dexamethasone versus propofol for pain relief in the migraine headache: a prospective double blind randomized clinical trial. BMC Neurol. 2012; 12:114. BioMed Central Full Text
  • [9]Soleimanpour H, Taheraghdam A, Ghafouri RR, Taghizadieh A, Marjany K, Soleimanpour M. Improvement of refractory migraine headache by propofol: case series. Int J Emerg Med. 2012; 5:19. BioMed Central Full Text
  • [10]Sheridan DC, Spiro DM, Nguyen T, Koch TK, Meckler GD. Low-dose propofol for the abortive treatment of pediatric migraine in the emergency department. Pediatr Emerg Care. 2012; 28:1293-1296.
  • [11]Zacny JP, Coalson DW, Young CJ, Klafta JM, Lichtor JL, Rupani G et al.. Propofol at conscious sedation doses produces mild analgesia to cold pressor-induced pain in healthy volunteers. J Clin Anesth. 1996; 8:469-474.
  • [12]Nishiyama T, Matsukawa T, Hanaoka K. Intrathecal propofol has analgesic effects on inflammation-induced pain in rats. Can J Anaesth. 2004; 51:899-904.
  • [13]Unlugenc H, Guler T, Gunes Y, Isik G. Comparative study of the antiemetic efficacy of ondansetron, propofol and midazolam in the early postoperative period. Eur J Anaesthesiol. 2004; 21:60-65.
  • [14]DeBalli P. The use of propofol as an antiemetic. Int Anesthesiol Clin. 2003; 41:67-77.
  • [15]Kam PC, Tan KH. Pruritus—itching for a cause and relief? Anaesthesia. 1996; 51:1133-1138.
  • [16]Borgeat A, Wilder-Smith O, Mentha G, Huber O. Propofol and cholestatic pruritus. Am J Gastroenterol. 1992; 87:672-674.
  • [17]Borgeat A, Wilder-Smith OH, Mentha G. Subhypnotic doses of propofol relieve pruritus associated with liver disease. Gastroenterology. 1993; 104:244-247.
  • [18]Mueller SW, Moore GD, MacLaren R. Fospropofol disodium for procedural sedation: emerging evidence of its value? Clin Med Insights Ther. 2010; 2:513-522.
  • [19]Mahajan B, Kaushal S, Mahajan R. Fospropofol. J Pharmacol Pharmacother. 2012; 3:293-296.
  • [20]Glen JB, Hunter SC, Blackburn TP, Wood P. Interaction studies and other investigations of the pharmacology of propofol (‘Diprivan’). Postgrad Med J. 1985; 61 Suppl 3:7-14.
  • [21]Contreras V, Sepúlveda PO, Shafer SL (2011) Bioavailability of propofol in humans. Int Soc Anaesth Pharmacol Annu Meet 21–23. https://www.isaponline.org/files/3413/1975/3128/ISAP_AM_2011_Abstracts_22.pdf
  • [22]Cozanitis DA, Levonen K, Marvola M, Rosenberg PH, Sandholm M. A comparative study of intravenous and rectal administration of propofol in piglets. Acta Anaesthesiol Scand. 1991; 35:575-577.
  • [23]Raoof AA, Augustijns PF, Verbeeck RK. In vivo assessment of intestinal, hepatic, and pulmonary first pass metabolism of propofol in the rat. Pharm Res. 1996; 13:891-895.
  • [24]Ceriana R, Braschi A, De Ponti F, Crema A, De Amici D. Is rectal administration of propofol effective? Anaesthesia. 1996; 51:504.
  • [25]Hiraoka H, Yamamoto K, Miyoshi S, Morita T, Nakamura K, Kadoi Y et al.. Kidneys contribute to the extrahepatic clearance of propofol in humans, but not lungs and brain. Br J Clin Pharmacol. 2005; 60:176-182.
  • [26]Hiraoka H, Yamamoto K, Okano N, Morita T, Goto F, Horiuchi R. Changes in drug plasma concentrations of an extensively bound and highly extracted drug, propofol, in response to altered plasma binding. Clin Pharmacol Ther. 2004; 75:324-330.
  • [27]Mahajan B, Kaushal S, Mahajan R. Fospropofol: pharmacokinetics? J Anaesthesiol Clin Pharmacol. 2012; 28:134-135.
  • [28]Fechner J, Ihmsen H, Hatterscheid D, Schiessl C, Vornov JJ, Burak E. Pharmacokinetics and clinical pharmacodynamics of the new propofol prodrug GPI 15715 in volunteers. Anesthesiology. 2003; 99:303-313.
  • [29]Welliver M, Rugari SM. New drug, fospropofol disodium, a propofol prodrug. AANA J. 2009; 77:301-308.
  • [30]Garnock-Jones KP, Scott LJ. Fospropofol. Drugs. 2010; 70:469-477.
  • [31]Skrajnar S, Cerne M, Bozic M, Peternel L. Effect of replacement fluids saline, gelofusine, and blood on biochemical and hematological parameters in rats subjected to repeated blood sampling. Med Sci Monit. 2009; 15:BR293-BR300.
  • [32]Moghaddam MF, Bogdanffy MS, Brown A, Ford K, Shalaby L. Plasma pharmacokinetics and tissue distribution of a N-pyrrolo-[1,2-c]imidazolylphenyl sulfonamide in rats. Drug Metab Dispos. 2002; 30:47-54.
  • [33]Choi YH, Bae SK, Oh JM, Kim SO, Lee MG. Pharmacokinetics of intravenous methotrexate in mutant Nagase analbuminemic rats. Biopharm Drug Dispos. 2007; 28:385-392.
  • [34]Schywalsky M, Ihmsen H, Tzabazis A, Fechner J, Burak E, Vornov J et al.. Pharmacokinetics and pharmacodynamics of the new propofol prodrug GPI 15715 in rats. Eur J Anaesthesiol. 2003; 20:182-190.
  • [35]Vornov JJ, Wozniak KM, Wu Y, Rojas C, Rais R, Slusher BS. Pharmacokinetics and pharmacodynamics of the glutamate carboxypeptidase II inhibitor 2-MPPA show prolonged alleviation of neuropathic pain through an indirect mechanism. J Pharmacol Exp Ther. 2013; 346:406-413.
  • [36]Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988; 32:77-88.
  • [37]Plummer GF. Improved method for the determination of propofol in blood by high-performance liquid chromatography with fluorescence detection. J Chromatogr. 1987; 421:171-176.
  • [38]Shah A, Mistry B, Gibiansky E, Gibiansky L. Fospropofol assay issues and impact on pharmacokinetic and pharmacodynamic evaluation. Anesthesiology. 2008; 109:937.
  • [39]Tsagogiorgas C, Theisinger S, Holm P, Thiel M, Quintel M, Holm R. Buccal absorption of propofol when dosed in 1-perfluorobutylpentane to anaesthetised and conscious Wistar rats and Gottingen mini-pigs. Eur J Pharm Biopharm. 2013; 85:1310-1316.
  • [40]Schywalsky M, Ihmsen H, Knoll R, Schwilden H. Binding of propofol to human serum albumin. Arzneimittelforschung. 2005; 55:303-306.
  • [41]Dutta S, Ebling WF. Formulation-dependent brain and lung distribution kinetics of propofol in rats. Anesthesiology. 1998; 89:678-685.
  • [42]Dutta S, Ebling WF. Emulsion formulation reduces propofol’s dose requirements and enhances safety. Anesthesiology. 1997; 87:1394-1405.
  • [43]Xu AJ, Duan SM, Zeng YM. Effects of intrathecal NMDA and AMPA receptors agonists or antagonists on antinociception of propofol. Acta Pharmacol Sin. 2004; 25:9-14.
  • [44]Tall JM. Housing supplementation decreases the magnitude of inflammation-induced nociception in rats. Behav Brain Res. 2009; 197:230-233.
  • [45]Rossi HL, Neubert JK. Effects of environmental enrichment on thermal sensitivity in an operant orofacial pain assay. Behav Brain Res. 2008; 187:478-482.
  • [46]Dong XP, Xu TL. The actions of propofol on gamma-aminobutyric acid-A and glycine receptors in acutely dissociated spinal dorsal horn neurons of the rat. Anesth Analg. 2002; 95:907-914.
  • [47]Shimizu M, Yamakura T, Tobita T, Okamoto M, Ataka T, Fujihara H. Propofol enhances GABA(A) receptor-mediated presynaptic inhibition in human spinal cord. NeuroReport. 2002; 13:357-360.
  • [48]Jewett BA, Gibbs LM, Tarasiuk A, Kendig JJ. Propofol and barbiturate depression of spinal nociceptive neurotransmission. Anesthesiology. 1992; 77:1148-1154.
  • [49]Ratnakumari L, Hemmings HC. Effects of propofol on sodium channel-dependent sodium influx and glutamate release in rat cerebrocortical synaptosomes. Anesthesiology. 1997; 86:428-439.
  • [50]Tibbs GR, Rowley TJ, Sanford RL, Herold KF, Proekt A, Hemmings HC et al.. HCN1 channels as targets for anesthetic and nonanesthetic propofol analogs in the amelioration of mechanical and thermal hyperalgesia in a mouse model of neuropathic pain. J Pharmacol Exp Ther. 2013; 345:363-373.
  文献评价指标  
  下载次数:30次 浏览次数:31次