期刊论文详细信息
Journal of Neuroinflammation
Complex pattern of interaction between in utero hypoxia-ischemia and intra-amniotic inflammation disrupts brain development and motor function
Shenandoah Robinson1  Rebekah Mannix1  Julian Flores1  Daniel J Firl1  Jacqueline Berglass1  Christopher J Corbett1  Lauren L Jantzie2 
[1] Departments of Neurology and Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA;Current address: Department of Pediatrics, UNM, Office of Pediatric Research, MSC10 5590, 1 University of New Mexico, Albuquerque, NM 87131, USA
关键词: Motor deficit;    Gait;    Neurofilament;    Myelin;    Prematurity;    Erythropoietin;    Lipopolysaccharide;    Inflammation;    Hypoxia-ischemia;    Preterm;   
Others  :  1151202
DOI  :  10.1186/1742-2094-11-131
 received in 2014-05-21, accepted in 2014-07-15,  发布年份 2014
PDF
【 摘 要 】

Background

Infants born preterm commonly suffer from a combination of hypoxia-ischemia (HI) and infectious perinatal inflammatory insults that lead to cerebral palsy, cognitive delay, behavioral issues and epilepsy. Using a novel rat model of combined late gestation HI and lipopolysaccharide (LPS)-induced inflammation, we tested our hypothesis that inflammation from HI and LPS differentially affects gliosis, white matter development and motor impairment during the first postnatal month.

Methods

Pregnant rats underwent laparotomy on embryonic day 18 and transient systemic HI (TSHI) and/or intra-amniotic LPS injection. Shams received laparotomy and anesthesia only. Pups were born at term. Immunohistochemistry with stereological estimates was performed to assess regional glial loads, and western blots were performed for protein expression. Erythropoietin ligand and receptor levels were quantified using quantitative PCR. Digigait analysis detected gait deficits. Statistical analysis was performed with one-way analysis of variance and post-hoc Bonferonni correction.

Results

Microglial and astroglial immunolabeling are elevated in TSHI + LPS fimbria at postnatal day 2 compared to sham (both P < 0.03). At postnatal day 15, myelin basic protein expression is reduced by 31% in TSHI + LPS pups compared to shams (P < 0.05). By postnatal day 28, white matter injury shifts from the acute injury pattern to a chronic injury pattern in TSHI pups only. Both myelin basic protein expression (P < 0.01) and the phosphoneurofilament/neurofilament ratio, a marker of axonal dysfunction, are reduced in postnatal day 28 TSHI pups (P < 0.001). Erythropoietin ligand to receptor ratios differ between brains exposed to TSHI and LPS. Gait analyses reveal that all groups (TSHI, LPS and TSHI + LPS) are ataxic with deficits in stride, paw placement, gait consistency and coordination (all P < 0.001).

Conclusions

Prenatal TSHI and TSHI + LPS lead to different patterns of injury with respect to myelination, axon integrity and gait deficits. Dual injury leads to acute alterations in glial response and cellular inflammation, while TSHI alone causes more prominent chronic white matter and axonal injury. Both injuries cause significant gait deficits. Further study will contribute to stratification of injury mechanisms in preterm infants, and guide the use of promising therapeutic interventions.

【 授权许可】

   
2014 Jantzie et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406043223553.pdf 1946KB PDF download
Figure 6. 126KB Image download
Figure 5. 69KB Image download
Figure 4. 66KB Image download
Figure 3. 91KB Image download
Figure 2. 152KB Image download
Figure 1. 167KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Blencowe H, Cousens S, Chou D, Oestergaard M, Say L, Moller AB, Kinney M, Lawn J, Born Too Soon Preterm Birth Action Group: Born too soon: the global epidemiology of 15 million preterm births. Reprod Health 2013, 10(Suppl 1):S2.
  • [2]Blencowe H, Lee AC, Cousens S, Bahalim A, Narwal R, Zhong N, Chou D, Say L, Modi N, Katz J, Vos T, Marlow N, Lawn JE: Preterm birth-associated neurodevelopmental impairment estimates at regional and global levels for 2010. Pediatr Res 2013, 74(Suppl 1):17-34.
  • [3]Mwaniki MK, Atieno M, Lawn JE, Newton CR: Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet 2012, 379:445-452.
  • [4]Orchinik LJ, Taylor HG, Espy KA, Minich N, Klein N, Sheffield T, Hack M: Cognitive outcomes for extremely preterm/extremely low birth weight children in kindergarten. J Int Neuropsychol Soc 2011, 17:1067-1079.
  • [5]Larroque B, Ancel PY, Marret S, Marchand L, Andre M, Arnaud C, Pierrat V, Roze JC, Messer J, Thiriez G, Burguet A, Picaud JC, Breart G, Kaminski M: Neurodevelopmental disabilities and special care of 5-year-old children born before 33 weeks of gestation (the EPIPAGE study): a longitudinal cohort study. Lancet 2008, 371:813-820.
  • [6]Volpe J: Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 2009, 8:110-124.
  • [7]Fanaroff A, Hack M: Periventricular leukomalacia - prospects for prevention. N Engl J Med 1999, 341:1229-1231.
  • [8]Leviton A, Allred EN, Dammann O, Engelke S, Fichorova RN, Hirtz D, Kuban KC, Ment LR, O’Shea TM, Paneth N, Shah B, Schreiber MD, ELGAN Study Investigators: Systemic inflammation, intraventricular hemorrhage, and white matter injury. J Child Neurol 2013, 28:1637-1645.
  • [9]Dammann O, Leviton A: Intermittent or sustained systemic inflammation and the preterm brain. Pediatr Res 2014, 75:376-380.
  • [10]Leviton A, Allred EN, Kuban KC, Hecht JL, Onderdonk AB, O’Shea TM, Paneth N: Microbiologic and histologic characteristics of the extremely preterm infant's placenta predict white matter damage and later cerebral palsy. The ELGAN study. Pediatr Res 2010, 67:95-101.
  • [11]O’Shea TM, Shah B, Allred EN, Fichorova RN, Kuban KC, Dammann O, Leviton A, Investigators ES: Inflammation-initiating illnesses, inflammation-related proteins, and cognitive impairment in extremely preterm infants. Brain Behav Immun 2013, 29:104-112.
  • [12]Gaillard R, Arends LR, Steegers EA, Hofman A, Jaddoe VW: Second- and third-trimester placental hemodynamics and the risks of pregnancy complications: the Generation R Study. Am J Epidemiol 2013, 177:743-754.
  • [13]Raisanen S, Gissler M, Saari J, Kramer M, Heinonen S: Contribution of risk factors to extremely, very and moderately preterm births - register-based analysis of 1,390,742 singleton births. PLoS One 2013, 8:e60660.
  • [14]Redline RW, Minich N, Taylor HG, Hack M: Placental lesions as predictors of cerebral palsy and abnormal neurocognitive function at school age in extremely low birth weight infants (<1 kg). Pediatr Dev Pathol 2007, 10:282-292.
  • [15]Lee J, Kim JS, Park JW, Park CW, Park JS, Jun JK, Yoon BH: Chronic chorioamnionitis is the most common placental lesion in late preterm birth. Placenta 2013, 34:681-689.
  • [16]Trivedi S, Joachim M, McElrath T, Kliman HJ, Allred EN, Fichorova RN, Onderdonk A, Heitor F, Chaychi L, Leviton A, Majzoub JA, ELGAN Study Investigators: Fetal-placental inflammation, but not adrenal activation, is associated with extreme preterm delivery. Am J Obstet Gynecol 2012, 206:e231-e238.
  • [17]Wu YW, Colford JM Jr: Chorioamnionitis as a risk factor for cerebral palsy. JAMA 2000, 284:1417-1424.
  • [18]Yoon BH, Park CW, Chaiworapongsa T: Intrauterine infection and the development of cerebral palsy. BJOG 2003, 110(Suppl 20):124-127.
  • [19]Shevell A, Wintermark P, Benini R, Shevell M, Oskoui M: Chorioamnionitis and cerebral palsy: lessons from a patient registry. Eur J Paediatr Neurol 2014, 18:301-307.
  • [20]Pappas A, Kendrick DE, Shankaran S, Stoll BJ, Bell EF, Laptook AR, Walsh MC, Das A, Hale EC, Newman NS, Higgins RD: Chorioamnionitis and early childhood outcomes among extremely low-gestational-age neonates. JAMA Pediatr 2014, 168:137-147.
  • [21]Yanowitz TD, Jordan JA, Gilmour CH, Towbin R, Bowen A, Roberts JM, Brozanski BS: Hemodynamic disturbances in premature infants born after chorioamnionitis: association with cord blood cytokine concentrations. Pediatr Res 2002, 51:310-316.
  • [22]Fukuda S, Yokoi K, Kitajima K, Tsunoda Y, Hayashi N, Shimizu S, Yoshida T, Hamajima N, Watanabe I, Goto H: Influence of premature rupture of membrane on the cerebral blood flow in low-birth-weight infant after the delivery. Brain Dev 2010, 32:631-635.
  • [23]Kaukola T, Herva R, Perhomaa M, Paakko E, Kingsmore S, Vainionpaa L, Hallman M: Population cohort associating chorioamnionitis, cord inflammatory cytokines and neurologic outcome in very preterm, extremely low birth weight infants. Pediatr Res 2006, 59:478-483.
  • [24]Wang X, Hagberg H, Nie C, Zhu C, Ikeda T, Mallard C: Dual role of intrauterine immune challenge on neonatal and adult brain vulnerability to hypoxia-ischemia. J Neuropathol Exp Neurol 2007, 66:552-561.
  • [25]Wang LW, Chang YC, Lin CY, Hong JS, Huang CC: Low-dose lipopolysaccharide selectively sensitizes hypoxic ischemia-induced white matter injury in the immature brain. Pediatr Res 2010, 68:41-47.
  • [26]Girard S, Kadhim H, Beaudet N, Sarret P, Sebire G: Developmental motor deficits induced by combined fetal exposure to lipopolysaccharide and early neonatal hypoxia/ischemia: a novel animal model for cerebral palsy in very premature infants. Neuroscience 2009, 158:673-682.
  • [27]Brochu ME, Girard S, Lavoie K, Sebire G: Developmental regulation of the neuroinflammatory responses to LPS and/or hypoxia-ischemia between preterm and term neonates: an experimental study. J Neuroinflammation 2011, 8:55.
  • [28]Eklind S, Mallard C, Leverin AL, Gilland E, Blomgren K, Mattsby-Baltzer I, Hagberg H: Bacterial endotoxin sensitizes the immature brain to hypoxic–ischaemic injury. Eur J Neurosci 2001, 13:1101-1106.
  • [29]Larouche A, Roy M, Kadhim H, Tsanaclis AM, Fortin D, Sebire G: Neuronal injuries induced by perinatal hypoxic-ischemic insults are potentiated by prenatal exposure to lipopolysaccharide: animal model for perinatally acquired encephalopathy. Dev Neurosci 2005, 27:134-142.
  • [30]Girard S, Kadhim H, Larouche A, Roy M, Gobeil F, Sebire G: Pro-inflammatory disequilibrium of the IL-1 beta/IL-1ra ratio in an experimental model of perinatal brain damages induced by lipopolysaccharide and hypoxia-ischemia. Cytokine 2008, 43:54-62.
  • [31]Coumans AB, Middelanis JS, Garnier Y, Vaihinger HM, Leib SL, Von Duering MU, Hasaart TH, Jensen A, Berger R: Intracisternal application of endotoxin enhances the susceptibility to subsequent hypoxic-ischemic brain damage in neonatal rats. Pediatr Res 2003, 53:770-775.
  • [32]Martinez-Lopez DG, Funderburg NT, Cerissi A, Rifaie R, Aviles-Medina L, Llorens-Bonilla BJ, Sleasman J, Luciano AA: Lipopolysaccharide and soluble CD14 in cord blood plasma are associated with prematurity and chorioamnionitis. Pediatr Res 2014, 75:67-74.
  • [33]Robinson S, Petelenz K, Li Q, Cohen M, Buczek M, Lust D, Miller R: Developmental changes induced by prenatal hypoxia-ischemia insult in rats models human perinatal brain injury. Neurobiol Dis 2005, 18:568-581.
  • [34]Jantzie L, Corbett C, Firl D, Robinson S: Postnatal erythropoietin mitigates impaired cerebral cortical development following subplate loss from prenatal hypoxia-ischemia. Cereb Cortex 2014. 10.1093/cercor/bhu1066
  • [35]Robinson S, Li Q, DeChant A, Cohen M: Neonatal loss of gamma amino butyric acid pathway expression after human perinatal brain injury. J Neurosurg Pediatr 2006, 104:396-408.
  • [36]Robinson S, Mikolaenko I, Thompson I, Cohen M, Goyal M: Loss of cation-chloride cotransporter expression in preterm infants with white matter lesions: implications for the pathogenesis of epilepsy. J Neuropath Exp Neuro 2010, 69:565-572.
  • [37]Mazur M, Miller R, Robinson S: Postnatal erythropoietin treatment mitigates neural cell loss after systemic prenatal hypoxic-ischemic injury. J Neurosurg Pediatr 2010, 6:206-221.
  • [38]Jantzie LL, Miller RH, Robinson S: Erythropoietin signaling promotes oligodendrocyte development following prenatal systemic hypoxic-ischemic brain injury. Pediatr Res 2013, 74:658-667.
  • [39]Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B: The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 1988, 96:857-881.
  • [40]Mouton PR, Long JM, Lei DL, Howard V, Jucker M, Calhoun ME, Ingram DK: Age and gender effects on microglia and astrocyte numbers in brains of mice. Brain Res 2002, 956:30-35.
  • [41]Paxinos G, Watson C: The Rat Brain in Stereotaxic Coordinates. 4th edition. San Diego: Academic; 1998.
  • [42]Amende I, Kale A, McCue S, Glazier S, Morgan JP, Hampton TG: Gait dynamics in mouse models of Parkinson’s disease and Huntington’s disease. J Neuroeng Rehabil 2005, 2:20.
  • [43]Hansen ST, Pulst SM: Response to ethanol induced ataxia between C57BL/6 J and 129X1/SvJ mouse strains using a treadmill based assay. Pharmacol Biochem Behav 2013, 103:582-588.
  • [44]Chau V, Brant R, Poskitt KJ, Tam EW, Synnes A, Miller SP: Postnatal infection is associated with widespread abnormalities of brain development in premature newborns. Pediatr Res 2012, 71:274-279.
  • [45]Chau V, McFadden DE, Poskitt KJ, Miller SP: Chorioamnionitis in the pathogenesis of brain injury in preterm infants. Clin Perinatol 2014, 41:83-103.
  • [46]Cai Z, Pan Z-L, Pang Y, Evans O, Rhodes P: Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr Res 2000, 47:64-72.
  • [47]Hickey E, Shi H, Van Arsdell G, Askalan R: Lipopolysaccharide-induced preconditioning against ischemic injury is associated with changes in toll-like receptor 4 expression in the rat developing brain. Pediatr Res 2011, 70:10-14.
  • [48]Breen K, Brown A, Burd I, Chai J, Friedman A, Elovitz MA: TLR-4-dependent and -independent mechanisms of fetal brain injury in the setting of preterm birth. Reprod Sci 2012, 19:839-850.
  • [49]Alan N, Manjila S, Minich N, Bass N, Cohen AR, Walsh M, Robinson S: Reduced ventricular shunt rate in very preterm infants with severe intraventricular hemorrhage: an institutional experience. J Neurosurg Pediatr 2012, 10:357-364.
  • [50]Fox LM, Choo P, Rogerson SR, Spittle AJ, Anderson PJ, Doyle L, Cheong JL: The relationship between ventricular size at 1 month and outcome at 2 years in infants less than 30 weeks’ gestation. Arch Dis Child Fetal Neonatal Ed 2014, 99:F209-F214.
  • [51]Olivier P, Baud O, Evrard P, Gressens P, Verney C: Prenatal ischemia and white matter damage in rats. J Neuropathol Exp Neurol 2005, 64:998-1006.
  • [52]Dammann O, Hagberg H, Leviton A: Is periventricular leukomalacia an axonopathy as well as an oligopathy? Pediatr Res 2001, 49:453-457.
  • [53]Haynes RL, Billiards SS, Borenstein NS, Volpe JJ, Kinney HC: Diffuse axonal injury in periventricular leukomalacia as determined by apoptotic marker fractin. Pediatr Res 2008, 63:656-661.
  • [54]Delcour M, Russier M, Xin DL, Massicotte VS, Barbe MF, Coq JO: Mild musculoskeletal and locomotor alterations in adult rats with white matter injury following prenatal ischemia. Int J Dev Neurosci 2011, 29:593-607.
  • [55]Eklind S, Mallard C, Arvidsson P, Hagberg H: Lipopolysaccharide induces both a primary and a secondary phase of sensitization in the developing rat brain. Pediatr Res 2005, 58:112-116.
  • [56]Chau V, Synnes A, Grunau RE, Poskitt KJ, Brant R, Miller SP: Abnormal brain maturation in preterm neonates associated with adverse developmental outcomes. Neurology 2013, 81:2082-2089.
  • [57]Bluml S, Wisnowski JL, Nelson MD Jr, Paquette L, Panigrahy A: Metabolic maturation of white matter is altered in preterm infants. PLoS One 2014, 9:e85829.
  • [58]Roberts G, Anderson PJ, Davis N, De Luca C, Cheong J, Doyle LW: Developmental coordination disorder in geographic cohorts of 8-year-old children born extremely preterm or extremely low birthweight in the 1990s. Dev Med Child Neurol 2011, 53:55-60.
  • [59]Prochazka A, Gillard D, Bennett DJ: Implications of positive feedback in the control of movement. J Neurophysiol 1997, 77:3237-3251.
  • [60]Kale A, Amende I, Meyer GP, Crabbe JC, Hampton TG: Ethanol’s effects on gait dynamics in mice investigated by ventral plane videography. Alcohol Clin Exp Res 2004, 28:1839-1848.
  • [61]Knabe W, Knerlich F, Washausen S, Kietzmann T, Siren A, Brunnett G, Kuhn H, Ehrenreich H: Expression patterns of erythropoietin and its receptor in the developing midbrain. Anat Embryol 2004, 207:503-512.
  • [62]Knabe W, Siren A-L, Ehrenreigh H, Kuhn H-J: Expression patterns of erythropoietin and its receptor in the developing spinal cord and dorsal root ganglia. Anat Embryol 2005, 210:209-219.
  • [63]Tsai P, Ohab J, Kertesz N, Groszer M, Matter C, Gao J, Liu X, Wu H, Carmichael S: A critical role of erythropoietin receptor in neurogenesis and post-stroke-recovery. J Neurosci 2006, 26:1269-1274.
  • [64]Ohls RK, Kamath-Rayne BD, Christensen RD, Wiedmeier SE, Rosenberg A, Fuller J, Lacy CB, Roohi M, Lambert DK, Burnett JJ, Pruckler B, Peceny H, Cannon DC, Loew JR: Cognitive outcomes of preterm infants randomized to darbepoetin, erythropoietin, or placebo. Pediatrics 2014, 133:1023-1030.
  • [65]van de Looij Y, Chatagner A, Quairiaux C, Gruetter R, Huppi PS, Sizonenko SV: Multi-modal assessment of long-term erythropoietin treatment after neonatal hypoxic-ischemic injury in rat brain. PLoS One 2014, 9:e95643.
  • [66]Fan X, Heijnen CJ, van der KM, Groenendaal F, van Bel F: Beneficial effect of erythropoietin on sensorimotor function and white matter after hypoxia-ischemia in neonatal mice. Pediatr Res 2011, 69:56-61.
  • [67]Gonzalez FF, Abel R, Almli CR, Mu D, Wendland M, Ferriero DM: Erythropoietin sustains cognitive function and brain volume after neonatal stroke. Dev Neurosci 2009, 31:403-411.
  • [68]Spandou E, Papadopoulou Z, Soubasi V, Karkavelas G, Simeonidou C, Pazaiti A, Guiba-Tziampiri O: Erythropoietin prevents long-term sensorimotor deficits and brain injury following neonatal hypoxia-ischemia in rats. Brain Res 2005, 1045:22-30.
  • [69]Barichello T, Simoes LR, Generoso JS, Sangiogo G, Danielski LG, Florentino D, Dominguini D, Comim CM, Petronilho F, Quevedo J: Erythropoietin prevents cognitive impairment and oxidative parameters in Wistar rats subjected to pneumococcal meningitis. Transl Res 2014, 163:503-513.
  • [70]Kanold PO, Luhmann HJ: The subplate and early cortical circuits. Annu Rev Neurosci 2010, 33:23-48.
  • [71]Kostovic I, Jovanov-Milosevic N, Rados M, Sedmak G, Benjak V, Kostovic-Srzentic M, Vasung L, Culjat M, Rados M, Huppi P, Judas M: Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches. Brain Struct Funct 2014, 219:231-253.
  • [72]Osredkar D, Thoresen M, Maes E, Flatebo T, Elstad M, Sabir H: Hypothermia is not neuroprotective after infection-sensitized neonatal hypoxic-ischemic brain injury. Resuscitation 2014, 85:567-572.
  文献评价指标  
  下载次数:87次 浏览次数:25次