期刊论文详细信息
Epigenetics & Chromatin
The complex pattern of epigenomic variation between natural yeast strains at single-nucleosome resolution
Gaël Yvert1  Hélène Bottin-Duplus1  Muniyandi Nagarajan2  Florent Chuffart1  Fabien Filleton1 
[1] Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, 46 Allée d’Italie, Lyon, 69007, France;Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
关键词: Ecology;    Epi-allele;    Epi-polymorphism;    Natural strains;    Evolution;    Yeast;    Histone modification;    Epigenomics;   
Others  :  1223308
DOI  :  10.1186/s13072-015-0019-3
 received in 2015-03-25, accepted in 2015-07-22,  发布年份 2015
PDF
【 摘 要 】

Background

Epigenomic studies on humans and model species have revealed substantial inter-individual variation in histone modification profiles. However, the pattern of this variation has not been precisely characterized, particularly regarding which genomic features are enriched for variability and whether distinct histone marks co-vary synergistically. Yeast allows us to investigate intra-species variation at high resolution while avoiding other sources of variation, such as cell type or subtype.

Results

We profiled histone marks H3K4me3, H3K9ac, H3K14ac, H4K12ac and H3K4me1 in three unrelated wild strains of Saccharomyces cerevisiae at single-nucleosome resolution and analyzed inter-strain differences statistically. All five marks varied significantly at specific loci, but to different extents. The number of nucleosomes varying for a given mark between two strains ranged from 20 to several thousands; +1 nucleosomes were significantly less subject to variation. Genes with highly evolvable or responsive expression showed higher variability; however, the variation pattern could not be explained by known transcriptional differences between the strains. Synergistic variation of distinct marks was not systematic, with surprising differences between functionally related H3K9ac and H3K14ac. Interestingly, H3K14ac differences that persisted through transient hyperacetylation were supported by H3K4me3 differences, suggesting stabilization via cross talk.

Conclusions

Quantitative variation of histone marks among S. cerevisiae strains is abundant and complex. Its relation to functional characteristics is modular and seems modest, with partial association with gene expression divergences, differences between functionally related marks and partial co-variation between marks that may confer stability. Thus, the specific context of studies, such as which precise marks, individuals and genomic loci are investigated, is primordial in population epigenomics studies. The complexity found in this pilot survey in yeast suggests that high complexity can be anticipated among higher eukaryotes, including humans.

【 授权许可】

   
2015 Filleton et al.

【 预 览 】
附件列表
Files Size Format View
20150902032112642.pdf 12370KB PDF download
Fig.8. 97KB Image download
Fig.7. 42KB Image download
Fig.6. 73KB Image download
Fig.5. 67KB Image download
Fig.4. 132KB Image download
Fig.3. 175KB Image download
Fig.2. 80KB Image download
Fig.1. 26KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

Fig.8.

【 参考文献 】
  • [1]Vaughn MW, Tanurd Ic M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD et al.. Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol. 2007; 5:e174.
  • [2]Schilling E, Chartouni CE, Rehli M. Allele-specific DNA methylation in mouse strains is mainly determined by cis-acting sequences. Genome Res. 2009; 19:2028-2035.
  • [3]Liu S, Sun K, Jiang T, Ho JP, Liu B, Feng J. Natural epigenetic variation in the female great roundleaf bat (Hipposideros armiger) populations. Mol Genet Genomics. 2012; 287:643-650.
  • [4]Zhang D, Cheng L, Badner JA, Chen C, Chen Q, Luo W et al.. Genetic control of individual differences in gene-specific methylation in human brain. Am J Hum Genet. 2010; 86:411-419.
  • [5]Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL et al.. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. 2010; 6:e1000952.
  • [6]Nagarajan M, Veyrieras JB, de Dieuleveult M, Bottin H, Fehrmann S, Abraham AL et al.. Natural single-nucleosome epi-polymorphisms in yeast. PLoS Genet. 2010; 6:e1000913.
  • [7]Kilpinen H, Waszak SM, Gschwind AR, Raghav SK, Witwicki RM, Orioli A et al.. Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science. 2013; 342:744-747.
  • [8]Kasowski M, Kyriazopoulou-Panagiotopoulou S, Grubert F, Zaugg JB, Kundaje A, Liu Y et al.. Extensive variation in chromatin states across humans. Science. 2013; 342:750-752.
  • [9]McVicker G, van de Geijn B, Degner JF, Cain CE, Banovich NE, Raj A et al.. Identification of Genetic variants that affect histone modifications in human cells. Science. 2013; 342:747-749.
  • [10]McDaniell R, Lee BK, Song L, Liu Z, Boyle AP, Erdos MR et al.. Heritable individual-specific and allele-specific chromatin signatures in humans. Science. 2010; 328:235-239.
  • [11]Chai X, Nagarajan S, Kim K, Lee K, Choi JK. Regulation of the boundaries of accessible chromatin. PLoS Genet. 2013; 9:e1003778.
  • [12]Moghaddam AMB, Roudier F, Seifert M, Bérard C, Magniette M-LM, Ashtiyani RK et al.. Additive inheritance of histone modifications in Arabidopsis thaliana intra-specific hybrids. Plant J. 2011; 67:691-700.
  • [13]Rintisch C, Heinig M, Bauerfeind A, Schafer S, Mieth C, Patone G et al.. Natural variation of histone modification and its impact on gene expression in the rat genome. Genome Res. 2014; 24:942-953.
  • [14]Kadota M, Yang HH, Hu N, Wang C, Hu Y, Taylor PR et al.. Allele-specific chromatin immunoprecipitation studies show genetic influence on chromatin state in human genome. PLoS Genet. 2007; 3:e81.
  • [15]Abraham AL, Nagarajan M, Veyrieras JB, Bottin H, Steinmetz LM, Yvert G. Genetic modifiers of chromatin acetylation antagonize the reprogramming of epi-polymorphisms. PLoS Genet. 2012; 8:e1002958.
  • [16]Liu CL, Kaplan T, Kim M, Buratowski S, Schreiber SL, Friedman N et al.. Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol. 2005; 3:e328.
  • [17]Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI et al.. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell. 2005; 122:517-527.
  • [18]Chabbert CD, Adjalley SH, Klaus B, Fritsch ES, Gupta I, Pelechano V et al.. A high-throughput ChIP-Seq for large-scale chromatin studies. Mol Syst Biol. 2015; 11:777.
  • [19]Wei W, McCusker JH, Hyman RW, Jones T, Ning Y, Cao Z et al.. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc Natl Acad Sci USA. 2007; 104:12825-12830.
  • [20]Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA et al.. Population genomics of domestic and wild yeasts. Nature. 2009; 458:337-341.
  • [21]Brem RB, Yvert G, Clinton R, Kruglyak L. Genetic dissection of transcriptional regulation in budding yeast. Science. 2002; 296:752-755.
  • [22]Ruderfer DM, Pratt SC, Seidel HS, Kruglyak L. Population genomic analysis of outcrossing and recombination in yeast. Nat Genet. 2006; 38:1077-1081.
  • [23]Gagneur J, Sinha H, Perocchi F, Bourgon R, Huber W, Steinmetz LM. Genome-wide allele- and strand-specific expression profiling. Mol Syst Biol. 2009; 5:274.
  • [24]Dai J, Hyland EM, Yuan DS, Huang H, Bader JS, Boeke JD. Probing nucleosome function: a highly versatile library of synthetic histone H3 and H4 mutants. Cell. 2008; 134:1066-1078.
  • [25]Breunig JS, Hackett SR, Rabinowitz JD, Kruglyak L. Genetic basis of metabolome variation in yeast. PLoS Genet. 2014; 10:e1004142.
  • [26]Mews P, Zee BM, Liu S, Donahue G, Garcia BA, Berger SL. Histone methylation has dynamics distinct from those of histone acetylation in cell cycle reentry from quiescence. Mol Cell Biol. 2014; 34:3968-3980.
  • [27]Kuo MH, Brownell JE, Sobel RE, Ranalli TA, Cook RG, Edmondson DG et al.. Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature. 1996; 383:269-272.
  • [28]Rosaleny LE, Ruiz-García AB, García-Martínez J, Pérez-Ortín JE, Tordera V. The Sas3p and Gcn5p histone acetyltransferases are recruited to similar genes. Genome Biol. 2007; 8:R119. BioMed Central Full Text
  • [29]Vicente-Muñoz S, Romero P, Magraner-Pardo L, Martinez-Jimenez CP, Tordera V, Pamblanco M. Comprehensive analysis of interacting proteins and genome-wide location studies of the Sas3-dependent NuA3 histone acetyltransferase complex. FEBS Open Bio. 2014; 4:996-1006.
  • [30]Robyr D, Suka Y, Xenarios I, Kurdistani SK, Wang A, Suka N et al.. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell. 2002; 109:437-446.
  • [31]Li S, Shogren-Knaak MA. The Gcn5 bromodomain of the SAGA complex facilitates cooperative and cross-tail acetylation of nucleosomes. J Biol Chem. 2009; 284:9411-9417.
  • [32]Cieniewicz AM, Moreland L, Ringel AE, Mackintosh SG, Raman A, Gilbert TM, et al. The bromodomain of Gcn5 regulates site-specificity of lysine acetylation on histone H3. Mol Cell Proteomics. 2014:mcp.M114.038174.
  • [33]Smith EN, Kruglyak L. Gene–environment interaction in yeast gene expression. PLoS Biol. 2008; 6:e83.
  • [34]Mosesson Y, Voichek Y, Barkai N. Divergence and selectivity of expression-coupled histone modifications in budding yeasts. PLoS One. 2014; 9:e101538.
  • [35]Churchman LS, Weissman JS. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature. 2011; 469:368-373.
  • [36]Schwalb B, Schulz D, Sun M, Zacher B, Dümcke S, Martin DE et al.. Measurement of genome-wide RNA synthesis and decay rates with dynamic transcriptome analysis (DTA). Bioinformatics. 2012; 28:884-885.
  • [37]Jónsson ZO, Jha S, Wohlschlegel JA, Dutta A. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Mol Cell. 2004; 16:465-477.
  • [38]Vargas RC, Tenreiro S, Teixeira MC, Fernandes AR, Sa-Correia I. Saccharomyces cerevisiae multidrug transporter Qdr2p (Yil121wp): localization and function as a quinidine resistance determinant. Antimicrob Agents Chemother. 2004; 48:2531-2537.
  • [39]Pace HC, Hodawadekar SC, Draganescu A, Huang J, Bieganowski P, Pekarsky Y et al.. Crystal structure of the worm NitFhit Rosetta stone protein reveals a Nit tetramer binding two Fhit dimers. Curr Biol. 2000; 10:907-917.
  • [40]Wall DP, Hirsh AE, Fraser HB, Kumm J, Giaever G, Eisen MB et al.. Functional genomic analysis of the rates of protein evolution. Proc Natl Acad Sci USA. 2005; 102:5483-5488.
  • [41]Landry CR, Lemos B, Rifkin SA, Dickinson WJ, Hartl DL. Genetic properties influencing the evolvability of gene expression. Science. 2007; 317:118-121.
  • [42]Tirosh I, Weinberger A, Carmi M, Barkai N. A genetic signature of interspecies variations in gene expression. Nat Genet. 2006; 38:830-834.
  • [43]Miller C, Schwalb B, Maier K, Schulz D, Dumcke S, Zacher B et al.. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol Syst Biol. 2011; 7:458.
  • [44]Chuffart F, Filleton F, Yvert G. NucleoMiner 2.0: detecting intra-species quantitative epigenomic variation at single-nucleosome resolution. Submitted.
  • [45]Jansen A, Verstrepen KJ. Nucleosome positioning in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2011; 75:301-320.
  • [46]MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, Fraenkel E. An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinform. 2006; 7:113. BioMed Central Full Text
  • [47]Hughes AL, Jin Y, Rando OJ, Struhl K. A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide pattern. Mol Cell. 2012; 48:5-15.
  • [48]Yen K, Vinayachandran V, Batta K, Koerber RT, Pugh BF. Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell. 2012; 149:1461-1473.
  • [49]Ronald J, Brem RB, Whittle J, Kruglyak L. Local regulatory variation in Saccharomyces cerevisiae. PLoS Genet. 2005; 1:e25.
  • [50]Ginsburg DS, Anlembom TE, Wang J, Patel SR, Li B, Hinnebusch AG. NuA4 links methylation of histone H3 lysines 4 and 36 to acetylation of histones H4 and H3. J Biol Chem. 2014; 289:32656-32670.
  • [51]Maltby VE, Martin BJE, Brind’Amour J, Chruscicki AT, McBurney KL, Schulze JM et al.. Histone H3K4 demethylation is negatively regulated by histone H3 acetylation in Saccharomyces cerevisiae. Proc Natl Acad Sci. 2012; 109:18505-18510.
  • [52]Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P et al.. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998; 14:115-132.
  • [53]Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9:357-359.
  • [54]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al.. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25:2078-2079.
  • [55]Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26:841-842.
  • [56]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C et al.. Versatile and open software for comparing large genomes. Genome Biol. 2004; 5:R12. BioMed Central Full Text
  • [57]Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11:R106. BioMed Central Full Text
  • [58]Nogami S, Ohya Y, Yvert G. Genetic complexity and quantitative trait loci mapping of yeast morphological traits. PLoS Genet. 2007; 3:e31.
  • [59]Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res. 2010; 20:90-100.
  • [60]Tirosh I, Barkai N. Two strategies for gene regulation by promoter nucleosomes. Genome Res. 2008; 18:1084-1091.
  文献评价指标  
  下载次数:58次 浏览次数:24次