期刊论文详细信息
Cell & Bioscience
Ferulic acid combined with aspirin demonstrates chemopreventive potential towards pancreatic cancer when delivered using chitosan-coated solid-lipid nanoparticles
Sunil Prabhu1  Jeffrey Wang1  Sushma Chenreddy1  Arvind Thakkar1 
[1] Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E Second Street, Pomona 91766, CA, USA
关键词: Solid lipid nanoparticles;    Chitosan;    Aspirin;    Ferulic acid;    Pancreatic cancer;    Chemoprevention;   
Others  :  1226112
DOI  :  10.1186/s13578-015-0041-y
 received in 2015-04-15, accepted in 2015-08-06,  发布年份 2015
PDF
【 摘 要 】

Background

The overall goal of this study was to demonstrate potential chemopreventive effects of ferulic acid (FA), an antioxidant, combined with aspirin (ASP), a commonly used anti-inflammatory drug for pancreatic cancer chemoprevention, using a novel chitosan-coated solid lipid nanoparticles (c-SLN) drug delivery system encapsulating FA and ASP.

Results

Our formulation optimization results showed that c-SLNs of FA and ASP exhibited appropriate initial particle sizes in range of 183 ± 46 and 229 ± 67 nm, encapsulation efficiency of 80 and 78 %, and zeta potential of 39.1 and 50.3 mV, respectively. In vitro studies were conducted to measure growth inhibition and degree of apoptotic cell death induced by either FA or ASP alone or in combination. Cell viability studies demonstrated combinations of low doses of free FA (200 µM) and ASP (1 mM) significantly reduced cell viability by 45 and 60 % in human pancreatic cancer cells MIA PaCa-2 and Panc-1, respectively. However, when encapsulated within c-SLNs, a 5- and 40-fold decreases in dose of FA (40 µM) and ASP (25 µM) was observed which was significant. Furthermore, increased apoptosis of 35 and 31 % was observed in MIA PaCa-2 and Panc-1 cells, respectively. In vivo studies using oral administration of combinations of 75 and 25 mg/kg of FA and ASP c-SLNs to MIA PaCa-2 pancreatic tumor xenograft mice model suppressed the growth of the tumor by 45 % compared to control, although this was not statistically significant. In addition, the immunohistochemical analysis of tumor tissue showed significant decrease in expression of proliferation proteins PCNA and MKI67, and also increased expression of apoptotic proteins p-RB, p21, and p-ERK1/2 indicating the pro-apoptotic role of the regimen.

Conclusion

Combination of FA and ASP delivered via a novel nanotechnology-based c-SLN formulation demonstrates potential for pancreatic cancer chemoprevention and could be a promising area for future studies.

【 授权许可】

   
2015 Thakkar et al.

【 预 览 】
附件列表
Files Size Format View
20150923034057746.pdf 4451KB PDF download
Fig.7. 25KB Image download
Fig.6. 179KB Image download
Fig.5. 176KB Image download
Fig.4. 55KB Image download
Fig.3. 70KB Image download
Fig.2. 78KB Image download
Fig.1. 35KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

【 参考文献 】
  • [1]Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014; 64(1):9-29.
  • [2]DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL et al.. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014; 64(4):252-271.
  • [3]Sutaria D, Grandhi BK, Thakkar A, Wang J, Prabhu S. Chemoprevention of pancreatic cancer using solid-lipid nanoparticulate delivery of a novel aspirin, curcumin and sulforaphane drug combination regimen. Int J Oncol. 2012; 41(6):2260-2268.
  • [4]Serrano D, Lazzeroni M, Decensi A. Chemoprevention of colorectal cancer: an update. Tech Coloproctol. 2004; 8 Suppl 2:s248-s252.
  • [5]Thun MJ, Henley SJ, Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst. 2002; 94(4):252-266.
  • [6]Thakkar A, Sutaria D, Grandhi BK, Wang J, Prabhu S. The molecular mechanism of action of aspirin, curcumin and sulforaphane combinations in the chemoprevention of pancreatic cancer. Oncol Rep. 2013; 29(4):1671-1677.
  • [7]Grandhi BK, Thakkar A, Wang J, Prabhu S. A novel combinatorial nanotechnology-based oral chemopreventive regimen demonstrates significant suppression of pancreatic cancer neoplastic lesions. Cancer Prev Res. 2013; 6(10):1015-1025.
  • [8]Chaudhary A, Sutaria D, Huang Y, Wang J, Prabhu S. Chemoprevention of colon cancer in a rat carcinogenesis model using a novel nanotechnology-based combined treatment system. Cancer Prev Res. 2011; 4(10):1655-1664.
  • [9]Thakkar A, Chenreddy S, Wang J, Prabhu S. Evaluation of ibuprofen loaded solid lipid nanoparticles and its combination regimens for pancreatic cancer chemoprevention. Int J Oncol. 2015; 46(4):1827-1834.
  • [10]Frenkel K. Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmacol Ther. 1992; 53(1):127-166.
  • [11]Coussens LM, Werb Z. Inflammatory cells and cancer: think different! J Exp Med. 2001; 193(6):F23-F26.
  • [12]Farrow B, Evers BM. Inflammation and the development of pancreatic cancer. Surg Oncol. 2002; 10(4):153-169.
  • [13]Garcea G, Dennison AR, Steward WP, Berry DP. Role of inflammation in pancreatic carcinogenesis and the implications for future therapy. Pancreatology. 2005; 5(6):514-529.
  • [14]Kovacic P, Jacintho JD. Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr Med Chem. 2001; 8(7):773-796.
  • [15]Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer. 2007; 121(11):2381-2386.
  • [16]Graf E. Antioxidant potential of ferulic acid. Free Radic Biol Med. 1992; 13(4):435-448.
  • [17]Kawabata K, Yamamoto T, Hara A, Shimizu M, Yamada Y, Matsunaga K et al.. Modifying effects of ferulic acid on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Lett. 2000; 157(1):15-21.
  • [18]Mori H, Kawabata K, Yoshimi N, Tanaka T, Murakami T, Okada T et al.. Chemopreventive effects of ferulic acid on oral and rice germ on large bowel carcinogenesis. Anticancer Res. 1999; 19(5A):3775-3778.
  • [19]Wargovich MJ, Jimenez A, McKee K, Steele VE, Velasco M, Woods J et al.. Efficacy of potential chemopreventive agents on rat colon aberrant crypt formation and progression. Carcinogenesis. 2000; 21(6):1149-1155.
  • [20]Zhang Z, Rigas B. NF-kappaB, inflammation and pancreatic carcinogenesis: NF-kappaB as a chemoprevention target (review). Int J Oncol. 2006; 29(1):185-192.
  • [21]Anderson KE, Johnson TW, Lazovich D, Folsom AR. Association between nonsteroidal anti-inflammatory drug use and the incidence of pancreatic cancer. J Natl Cancer Inst. 2002; 94(15):1168-1171.
  • [22]Jacobs EJ, Connell CJ, Rodriguez C, Patel AV, Calle EE, Thun MJ. Aspirin use and pancreatic cancer mortality in a large United States cohort. J Natl Cancer Inst. 2004; 96(7):524-528.
  • [23]Schernhammer ES, Kang JH, Chan AT, Michaud DS, Skinner HG, Giovannucci E et al.. A prospective study of aspirin use and the risk of pancreatic cancer in women. J Natl Cancer Inst. 2004; 96(1):22-28.
  • [24]Roy K, Mao HQ, Huang SK, Leong KW. Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med. 1999; 5(4):387-391.
  • [25]Maezaki Y, Tsuji K, Nakagawa Y, Kawai Y, Akimoto M, Tsugita T et al.. Hypocholesterolemic effect of chitosan in adult males. Biosci Biotech Bioch. 1993; 57(9):1439-1444.
  • [26]Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive? Biomacromolecules. 2008; 9(7):1837-1842.
  • [27]van der Lubben IM, Verhoef JC, Borchard G, Junginger HE. Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci. 2001; 14(3):201-207.
  • [28]Sakloetsakun D, Perera G, Hombach J, Millotti G, Bernkop-Schnurch A. The impact of vehicles on the mucoadhesive properties of orally administrated nanoparticles: a case study with chitosan-4-thiobutylamidine conjugate. AAPS PharmSciTech. 2010; 11(3):1185-1192.
  • [29]Fonte P, Andrade F, Araujo F, Andrade C, Neves J, Sarmento B. Chitosan-coated solid lipid nanoparticles for insulin delivery. Methods Enzymol. 2012; 508:295-314.
  • [30]Hou YZ, Yang J, Zhao GR, Yuan YJ. Ferulic acid inhibits vascular smooth muscle cell proliferation induced by angiotensin II. Eur J Pharmacol. 2004; 499(1–2):85-90.
  • [31]Janicke B, Hegardt C, Krogh M, Onning G, Akesson B, Cirenajwis HM et al.. The antiproliferative effect of dietary fiber phenolic compounds ferulic acid and p-coumaric acid on the cell cycle of Caco-2 cells. Nutr Cancer. 2011; 63(4):611-622.
  • [32]Bandugula VR, Prasad R. 2-Deoxy-d-glucose and ferulic acid modulates radiation response signaling in non-small cell lung cancer cells. Tumour Biol. 2013; 34(1):251-259.
  • [33]Hwang ES, Bowen PE. DNA damage, a biomarker of carcinogenesis: its measurement and modulation by diet and environment. Crit Rev Food Sci Nutr. 2007; 47(1):27-50.
  • [34]Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol. 2010; 38(1):96-109.
  • [35]Seril DN, Liao J, Yang GY, Yang CS. Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models. Carcinogenesis. 2003; 24(3):353-362.
  • [36]Konturek PC, Konturek SJ, Brzozowski T. Gastric cancer and Helicobacter pylori infection. J Physiol Pharmacol. 2006; 57 Suppl 3:51-65.
  • [37]Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res. 2008; 68(6):1777-1785.
  • [38]Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H et al.. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008; 320(5876):661-664.
  • [39]Klaunig JE, Kamendulis LM. The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol. 2004; 44:239-267.
  • [40]Ling SS, Magosso E, Khan NA, Yuen KH, Barker SA. Enhanced oral bioavailability and intestinal lymphatic transport of a hydrophilic drug using liposomes. Drug Dev Ind Pharm. 2006; 32(3):335-345.
  • [41]Hashida N, Murakami M, Yoshikawa H, Takada K, Muranishi S. Intestinal absorption of carboxyfluorescein entrapped in liposomes in comparison with its administration with lipid-surfactant mixed micelles. J Pharmacobiodyn. 1984; 7(3):195-203.
  • [42]Yuan H, Chen J, Du YZ, Hu FQ, Zeng S, Zhao HL. Studies on oral absorption of stearic acid SLN by a novel fluorometric method. Colloids Surf B. 2007; 58(2):157-164.
  • [43]Sanjula B, Shah FM, Javed A, Alka A. Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement. J Drug Target. 2009; 17(3):249-256.
  • [44]Yuan H, Jiang SP, Du YZ, Miao J, Zhang XG, Hu FQ. Strategic approaches for improving entrapment of hydrophilic peptide drugs by lipid nanoparticles. Colloids Surf B. 2009; 70(2):248-253.
  • [45]Chen MC, Mi FL, Liao ZX, Hsiao CW, Sonaje K, Chung MF et al.. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev. 2013; 65(6):865-879.
  • [46]Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008; 22(3):659-661.
  • [47]Suzuki A, Kagawa D, Fujii A, Ochiai R, Tokimitsu I, Saito I. Short- and long-term effects of ferulic acid on blood pressure in spontaneously hypertensive rats. Am J Hypertens. 2002; 15(4 Pt 1):351-357.
  • [48]Huang MT, Smart RC, Wong CQ, Conney AH. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1988; 48(21):5941-5946.
  • [49]Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K et al.. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001; 22(2):153-183.
  • [50]Adachi T, Kar S, Wang M, Carr BI. Transient and sustained ERK phosphorylation and nuclear translocation in growth control. J Cell Physiol. 2002; 192(2):151-159.
  • [51]Im SR, Jang YJ. Aspirin enhances TRAIL-induced apoptosis via regulation of ERK1/2 activation in human cervical cancer cells. Biochem Biophys Res Commun. 2012; 424(1):65-70.
  • [52]Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995; 80(2):179-185.
  • [53]Chen JR, Plotkin LI, Aguirre JI, Han L, Jilka RL, Kousteni S et al.. Transient versus sustained phosphorylation and nuclear accumulation of ERKs underlie anti-versus pro-apoptotic effects of estrogens. J Biol Chem. 2005; 280(6):4632-4638.
  • [54]Sze A, Erickson D, Ren L, Li D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow. J Colloid Interface Sci. 2003; 261(2):402-410.
  • [55]Ouyang N, Williams JL, Tsioulias GJ, Gao J, Iatropoulos MJ, Kopelovich L et al.. Nitric oxide-donating aspirin prevents pancreatic cancer in a hamster tumor model. Cancer Res. 2006; 66(8):4503-4511.
  • [56]Detre S, Saclani Jotti g, Dowsett M. A “quickscore” method for immunohistochemical semiquantitation: validation for oestrogen receptor in breast carcinomas. J Clin Pathol. 1995; 48(9):876-878.
  文献评价指标  
  下载次数:40次 浏览次数:18次