Lipids in Health and Disease | |
Activation of peroxisome proliferator activated receptor alpha ameliorates ethanol induced steatohepatitis in mice | |
Jun Yu2  Yuemin Nan1  Wenjuan Wu1  Yuguo Zhang1  Rongqi Wang1  Hongmei Mi1  Suxian Zhao1  Wencong Li1  Weiguang Ren1  Lingbo Kong1  | |
[1] Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China;Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong | |
关键词: animal experiment; steatohepatitis; ethanol; Peroxisome proliferator activated receptor alpha; | |
Others : 1212341 DOI : 10.1186/1476-511X-10-246 |
|
received in 2011-11-19, accepted in 2011-12-30, 发布年份 2011 | |
【 摘 要 】
Background
Peroxisome proliferator activated receptor alpha (PPARα) regulates lipids metabolism and inhibits inflammatory response. However, the role of PPARα in alcoholic liver disease is largely unknown. We aim to elucidate the effect and the molecular basis of PPARα in ethanol induced hepatic injury in mice.
Results
C57BL/6J mice fed with 4% ethanol-containing Lieber-DeCarli liquid diet for 12 weeks exhibited hepatocyte steatosis, necrosis and inflammatory infiltration, accompanied with elevated serum alanine aminotransferase (ALT) and aspartic transaminase (AST) levels, decreased hepatic expression of PPARα, lipids oxidation promoting genes and anti-inflammatory factors, as well as enhanced hepatic expression of fatty acids synthesis promoting genes and pro-inflammatory cytokines. Induction of PPARα by PPARα agonist WY14643 treatment for 2 weeks ameliorated the severity of liver injury and restored expression of genes altered by ethanol treatment. However, administration of PPARα antagonist GW6471 for 2 weeks promoted the inflammatory response.
Conclusions
The present study provided the evidence for the protective role of PPARα in ameliorating ethanol induced liver injury through modulation of the genes related to lipid metabolism and inflammatory response.
【 授权许可】
2011 Kong et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150614092118250.pdf | 544KB | download | |
Figure 6. | 59KB | Image | download |
Figure 5. | 50KB | Image | download |
Figure 4. | 43KB | Image | download |
Figure 3. | 50KB | Image | download |
Figure 2. | 137KB | Image | download |
Figure 1. | 14KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Tilg H, Diehl AM: Cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med 2000, 343:1467-1476.
- [2]Chaung WW, Jacob A, Ji Y, Wang P: Suppression of PGC-1alpha by Ethanol: Implications of Its Role in Alcohol Induced Liver Injury. Int J Clin Exp Med 2008, 1:161-170.
- [3]Ji C, Chan C, Kaplowitz N: Predominant role of sterol response element binding proteins (SREBP) lipogenic pathways in hepatic steatosis in the murine intragastric ethanol feeding model. J Hepatol 2006, 45:717-724.
- [4]Banerjee A, Burghardt RC, Johnson GA, White FJ, Ramaiah SK: The temporal expression of osteopontin (SPP-1) in the rodent model of alcoholic steatohepatitis: a potential biomarker. Toxicol Pathol 2006, 34:373-384.
- [5]Banerjee A, Apte UM, Smith R, Ramaiah SK: Higher neutrophil infiltration mediated by osteopontin is a likely contributing factor to the increased susceptibility of females to alcoholic liver disease. J Pathol 2006, 208:473-485.
- [6]Spitzer JA, Zheng M, Kolls JK, Vande Stouwe C, Spitzer JJ: Ethanol and LPS modulate NF-kappaB activation, inducible NO synthase and COX-2 gene expression in rat liver cells in vivo. Front Biosci 2002, 7:a99-108.
- [7]Crabb DW, Galli A, Fischer M, You M: Molecular mechanisms of alcoholic fatty liver: role of peroxisome proliferator-activated receptor alpha. Alcohol 2004, 34:35-38.
- [8]Donohue TM Jr: Alcohol-induced steatosis in liver cells. World J Gastroenterol 2007, 13:4974-4978.
- [9]Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T, Gonzalez FJ: Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem 1998, 273:5678-5684.
- [10]Watanabe K, Fujii H, Takahashi T, Kodama M, Aizawa Y, Ohta Y, Ono T, Hasegawa G, Naito M, Nakajima T, Kamijo Y, Gonzalez FJ, Aoyama T: Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem 2000, 275:22293-22299.
- [11]Moriya T, Naito H, Ito Y, Nakajima T: "Hypothesis of Seven Balances": Molecular Mechanisms behind Alcoholic Liver Diseases and Association with PPAR. J Occup Health 2009, 51:391-403.
- [12]Shulman AI, Mangelsdorf DJ: Retinoid X Receptor heterodimers in the metabolic syndrome. N Engl J Med 2005, 353:604-615.
- [13]Bocos C, Göttlicher M, Gearing K, Banner C, Enmark E, Teboul M, Crickmore A, Gustafsson JA: Fatty acid activation of peroxisome proliferator-activated receptor (PPAR). J Steroid Biochem Mol Biol 1995, 53:467-473.
- [14]Issemann I, Green S: Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990, 347:645-650.
- [15]Patsouris D, Reddy JK, Müller M, Kersten S: Peroxisome Proliferator- Activated Receptor α Mediates the Effects of High-Fat Diet on Hepatic Gene Expression. Endocrinology 2006, 147:1508-1516.
- [16]Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E: Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 2007, 5:426-437.
- [17]Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA: Endocrine regulation of the fasting response by PPAR-mediated induction of fibroblast growth factor 21. Cell Metab 2007, 5:415-425.
- [18]Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB: FGF-21 as a novel metabolic regulator. J Clin Invest 2005, 115:1627-1635.
- [19]Lieber CS, Leo MA, Wang X, Decarli LM: Effect of chronic alcohol consumption on hepatic SIRT1 and PGC-1alpha in rats. Biochem Biophys Res Commun 2008, 370:44-48.
- [20]You M, Liang X, Ajmo JM, Ness GC: Involvement of mammalian sirtuin 1 in the action of ethanol in the liver. Am J Physiol Gastrointest Liver Physiol 2008, 294:G892-898.
- [21]Chau MD, Gao J, Yang Q, Wu Z, Gromada J: Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1α pathway. Proc Natl Acad Sci USA 2010, 107:12553-12558.
- [22]Handschin C, Spiegelman BM: Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 2006, 27:728-735.
- [23]Puigserver P, Spiegelman BM: Peroxisome proliferator-activated receptorgamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 2003, 24:78-90.
- [24]Lin J, Handschin C, Spiegelman BM: Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 2005, 1:361-370.
- [25]Cantó C, Auwerx J: PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 2009, 20:98-105.
- [26]Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J: AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009, 458:1056-1060.
- [27]Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X: Hepatocyte- specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 2009, 9:327-338.
- [28]Suchankova G, Nelson LE, Gerhart-Hines Z, Kelly M, Gauthier MS, Saha AK, Ido Y, Puigserver P, Ruderman NB: Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells. Biochem Biophys Res Commun 2009, 378:836-841.
- [29]Rogers CQ, Ajmo JM, You M: Adiponectin and alcoholic fatty liver disease. IUBMB Life 2008, 60:790-797.
- [30]You M, Rogers CQ: Adiponectin: a key adipokine in alcoholic fatty liver. Exp Biol Med (Maywood) 2009, 234:2850-2959.
- [31]Yu W, Chen Z, Zhang J, Zhang L, Ke H, Huang L, Peng Y, Zhang X, Li S, Lahn BT, Xiang AP: Critical role of phosphoinositide 3-kinase cascade in adipogenesis of human mesenchymal stem cells. Mol Cell Biochem 2008, 310:11-18.
- [32]Sahai A, Pan X, Paul R, Malladi P, Kohli R, Whitington PF: Roles of phosphatidylinositol 3-kinase and osteopontin in steatosis and aminotransferase release by hepatocytes treated with methionine-choline-deficient medium. Am J Physiol Gastrointest Liver Physiol 2006, 291:G55-62.
- [33]Masaki T, Chiba S, Tatsukawa H, Yasuda T, Noguchi H, Seike M, Yoshimatsu H: Adiponectin protects LPS-induced liver injury through modulation of TNF-alpha in KK-Ay obese mice. Hepatology 2004, 40:177-184.
- [34]Mandal P, Park PH, McMullen MR, Pratt BT, Nagy LE: The Anti-Inflammatory Effects of Adiponectin Are Mediated via a Heme Oxygenase-1 Dependent Pathway in Rat Kupffer Cells. Hepatology 2010, 51:1420-1429.
- [35]Otterbein LE, Soares MP, Yamashita K, Bach FH: Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol 2003, 24:449-455.
- [36]Lin H, Yu CH, Jen CY, Cheng CF, Chou Y, Chang CC, Juan SH: Adiponectin- mediated heme oxygenase-1 induction protects against iron-induced liver injury via a PPARα dependent mechanism. Am J Pathol 2010, 177:1697-1709.
- [37]Dominguez M, Rincón D, Abraldes JG, Miquel R, Colmenero J, Bellot P, García-Pagán JC, Fernández R, Moreno M, Bañares R, Arroyo V, Caballería J, Ginès P, Bataller R: A new scoring system for prognostic stratification of patients with alcoholic hepatitis. Am J Gastroenterol 2008, 103:2747-2756.