期刊论文详细信息
Journal of Translational Medicine
A short protocol using dexamethasone and monophosphoryl lipid A generates tolerogenic dendritic cells that display a potent migratory capacity to lymphoid chemokines
Juan Carlos Aguillón1  Diego Catalán1  Karina Pino-Lagos1  María Carmen Molina3  Pía Tobar4  Verónica Ramos1  Lilian Soto5  Rodrigo González2  Milton Larrondo2  David Gárate4  Bárbara Pesce1  Javier Campos1  Jaxaira Maggi1  Lorena Hoyos1  Rodrigo Morales1  Paulina García-González1 
[1] Millennium Institute on Immunology and Immunotherapy, Santiago, Chile;Banco de Sangre, Hospital Clínico de la Universidad de Chile, Santiago, Chile;Laboratorio de Evasión Inmune, Programa Disciplinario de Inmunología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile;Immune Regulation and Tolerance Research Group, Programa Disciplinario de Inmunología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile;Sección de Reumatología, Hospital Clínico de la Universidad de Chile, Santiago, Chile
关键词: Cell-based therapy;    CXCR4;    CCR7;    Chemokine receptors;    Monocyte-derived dendritic cells;    Tolerance;   
Others  :  827531
DOI  :  10.1186/1479-5876-11-128
 received in 2013-02-25, accepted in 2013-05-20,  发布年份 2013
PDF
【 摘 要 】

Background

Generation of tolerogenic dendritic cells (TolDCs) for therapy is challenging due to its implications for the design of protocols suitable for clinical applications, which means not only using safe products, but also working at defining specific biomarkers for TolDCs identification, developing shorter DCs differentiation methods and obtaining TolDCs with a stable phenotype. We describe here, a short-term protocol for TolDCs generation, which are characterized in terms of phenotypic markers, cytokines secretion profile, CD4+ T cell-stimulatory ability and migratory capacity.

Methods

TolDCs from healthy donors were generated by modulation with dexamethasone plus monophosphoryl lipid A (MPLA-tDCs). We performed an analysis of MPLA-tDCs in terms of yield, viability, morphology, phenotypic markers, cytokines secretion profile, stability, allogeneic and antigen-specific CD4+ T-cell stimulatory ability and migration capacity.

Results

After a 5-day culture, MPLA-tDCs displayed reduced expression of costimulatory and maturation molecules together to an anti-inflammatory cytokines secretion profile, being able to maintain these tolerogenic features even after the engagement of CD40 by its cognate ligand. In addition, MPLA-tDCs exhibited reduced capabilities to stimulate allogeneic and antigen-specific CD4+ T cell proliferation, and induced an anti-inflammatory cytokine secretion pattern. Among potential tolerogenic markers studied, only TLR-2 was highly expressed in MPLA-tDCs when compared to mature and immature DCs. Remarkable, like mature DCs, MPLA-tDCs displayed a high CCR7 and CXCR4 expression, both chemokine receptors involved in migration to secondary lymphoid organs, and even more, in an in vitro assay they exhibited a high migration response towards CCL19 and CXCL12.

Conclusion

We describe a short-term protocol for TolDC generation, which confers them a stable phenotype and migratory capacity to lymphoid chemokines, essential features for TolDCs to be used as therapeutics for autoimmunity and prevention of graft rejection.

【 授权许可】

   
2013 García-González et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713152011411.pdf 2719KB PDF download
Figure 6. 94KB Image download
Figure 5. 65KB Image download
Figure 4. 60KB Image download
Figure 3. 45KB Image download
Figure 2. 80KB Image download
Figure 1. 95KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Ueno H, Klechevsky E, Morita R, Aspord C, Cao T, Matsui T, Di Pucchio T, Connolly J, Fay JW, Pascual V, Palucka AK, Banchereau J: Dendritic cell subsets in health and disease. Immunol Rev 2007, 219:118-142.
  • [2]Randolph GJ, Ochando J, Partida-Sanchez S: Migration of dendritic cell subsets and their precursors. Annu Rev Immunol 2008, 26:293-316.
  • [3]Delgado-Martín C, Escribano C, Pablos JL, Riol-Blanco L, Rodríguez-Fernández JL: Chemokine CXCL12 Uses CXCR4 and a Signaling Core Formed by Bifunctional Akt, Extracellular Signal-regulated Kinase (ERK)1/2, and Mammalian Target of Rapamycin Complex 1 (mTORC1) Proteins to Control Chemotaxis and Survival Simultaneously in Mature Dendritic Cells. J Biol Chem 2011, 286:37222-37236.
  • [4]Naranjo-Gomez M, Raich-Regue D, Onate C, Grau-Lopez L, Ramo-Tello C, Pujol-Borrell R, Martinez-Caceres E, Borras FE: Comparative study of clinical grade human tolerogenic dendritic cells. J Transl Med 2011, 9:89. BioMed Central Full Text
  • [5]Torres-Aguilar H, Aguilar-Ruiz SR, González-Pérez G, Munguía R, Bajaña S, Meraz-Ríos MA, Sánchez-Torres C: Tolerogenic Dendritic Cells Generated with Different Immunosuppressive Cytokines Induce Antigen-Specific Anergy and Regulatory Properties in Memory CD4+ T Cells. J Immunol 2010, 184:1765-1775.
  • [6]Huang H, Dawicki W, Zhang X, Town J, Gordon JR: Tolerogenic Dendritic Cells Induce CD4+ CD25hiFoxp3+ Regulatory T Cell Differentiation from CD4+ CD25-/loFoxp3- Effector T Cells. J Immunol 2010, 185:5003-5010.
  • [7]Imperato AK, Bingham CO, Abramson SB: Overview of benefit/risk of biological agents. Clin Exp Rheumatol 2004, 22:S108-S114.
  • [8]Sochorová K, Budinský V, Rožková D, Tobiasová Z, Dusilová-Sulková S, Špíšek R, Bartůňková J: Paricalcitol (19-nor-1,25-dihydroxyvitamin D2) and calcitriol (1,25-dihydroxyvitamin D3) exert potent immunomodulatory effects on dendritic cells and inhibit induction of antigen-specific T cells. Clin Immunol 2009, 133:69-77.
  • [9]Unger WWJ, Laban S, Kleijwegt FS, van der Slik AR, Roep BO: Induction of Treg by monocyte-derived DC modulated by vitamin D3 or dexamethasone: Differential role for PD-L1. Eur J Immunol 2009, 39:3147-3159.
  • [10]Matsue H, Yang C, Matsue K, Edelbaum D, Mummert M, Takashima A: Contrasting Impacts of Immunosuppressive Agents (Rapamycin, FK506, Cyclosporin A, and Dexamethasone) on Bidirectional Dendritic Cell-T Cell Interaction During Antigen Presentation. J Immunol 2002, 169:3555-3564.
  • [11]Adikari SB, Pettersson A, Soderstrom CM, Huang YM, Link H: Interleukin-10-Modulated Immature Dendritic Cells Control the Proinflammatory Environment in Multiple Sclerosis. Scand J Immunol 2004, 59:600-606.
  • [12]Henry E, Desmet CJ, Garzé V, Fiévez L, Bedoret D, Heirman C, Faisca P, Jaspar FJ, Gosset P, Jacquet APA, Desmecht D, Thielemans K, Lekeux P, Moser M, Bureau F: Dendritic Cells Genetically Engineered to Express IL-10 Induce Long-Lasting Antigen-Specific Tolerance in Experimental Asthma. J Immunol 2008, 181:7230-7242.
  • [13]Morita Y, Yang J, Gupta R, Shimizu K, Shelden EA, Endres CJ, Mulé JJ, McDonagh KT, Fox DA: Dendritic cells genetically engineered to express IL-4 inhibit murine collagen-induced arthritis. J Clin Invest 2001, 107:1275-1284.
  • [14]Giannoukakis N, Phillips B, Finegold D, Harnaha J, Trucco M: Phase I (Safety) Study of Autologous Tolerogenic Dendritic Cells in Type 1 Diabetic Patients. Diabetes Care 2011, 34:2026-2032.
  • [15]Hilkens CM, Isaacs JD, Thomson AW: Development of dendritic cell-based immunotherapy for autoimmunity. Int Rev Immunol 2010, 29:156-183.
  • [16]Raiotach-Regue D, Grau-Lopez L, Naranjo-Gomez M, Ramo-Tello C, Pujol-Borrell R, Martinez-Caceres E, Borras FE: Stable antigen-specific T-cell hyporesponsiveness induced by tolerogenic dendritic cells from multiple sclerosis patients. Eur J Immunol 2012, 42:771-782.
  • [17]Harry RA, Anderson AE, Isaacs JD, Hilkens CM: Generation and characterisation of therapeutic tolerogenic dendritic cells for rheumatoid arthritis. Ann Rheum Dis 2010, 69:2042-2050.
  • [18]Sumpter TL, Thomson AW: The STATus of PD-L1 (B7-H1) on tolerogenic APCs. Eur J Immunol 2011, 41:286-290.
  • [19]Chamorro S, García-Vallejo JJ, Unger WWJ, Fernandes RJ, Bruijns SCM, Laban S, Roep BO, ‘t Hart BA, van Kooyk Y: TLR Triggering on Tolerogenic Dendritic Cells Results in TLR2 Up-Regulation and a Reduced Proinflammatory Immune Program. J Immunol 2009, 183:2984-2994.
  • [20]Anderson AE, Swan DJ, Sayers BL, Harry RA, Patterson AM, von Delwig A, Robinson JH, Isaacs JD, Hilkens CMU: LPS activation is required for migratory activity and antigen presentation by tolerogenic dendritic cells. J Leukocyte Biol 2009, 85:243-250.
  • [21]van Kooten C, Stax AS, Woltman AM, Gelderman KA: The Use of Dexamethasone in the Induction of Tolerogenic Dendritic Cells. Handbook of Experimental Pharmacology "Dendritic Cells". Volume 188 2009, 233-249.
  • [22]van Duivenvoorde LM, Han WGH, Bakker AM, Louis-Plence P, Charbonnier LM, Apparailly F, van der Voort EIH, Jorgensen C, Huizinga TWJ, Toes REM: Immunomodulatory Dendritic Cells Inhibit Th1 Responses and Arthritis via Different Mechanisms. J Immunol 2007, 179:1506-1515.
  • [23]Woltman AM, Van Der Kooij SW, De Fijter JW, Van Kooten C: Maturation-Resistant Dendritic Cells Induce Hyporesponsiveness in Alloreactive CD45RA+ and CD45RO+ T-Cell Populations. Am J Transplantat 2006, 6:2580-2591.
  • [24]Lau AWT, Biester S, Cornall RJ, Forrester JV: Lipopolysaccharide-Activated IL-10-Secreting Dendritic Cells Suppress Experimental Autoimmune Uveoretinitis by MHCII-Dependent Activation of CD62L-Expressing Regulatory T Cells. J Immunol 2008, 180:3889-3899.
  • [25]Lan YY, Wang Z, Raimondi G, Wu W, Colvin BL, De Creus A, Thomson AW: “Alternatively Activated” Dendritic Cells Preferentially Secrete IL-10, Expand Foxp3+CD4+ T Cells, and Induce Long-Term Organ Allograft Survival in Combination with CTLA4-Ig. J Immunol 2006, 177:5868-5877.
  • [26]Sato K, Yamashita N, Baba M, Matsuyama T: Modified myeloid dendritic cells act as regulatory dendritic cells to induce anergic and regulatory T cells. Blood 2003, 101:3581-3589.
  • [27]Ismaili J, Rennesson J, Aksoy E, Vekemans J, Vincart B, Amraoui Z, Van Laethem F, Goldman M, Dubois PM: Monophosphoryl Lipid A Activates Both Human Dendritic Cells and T Cells. J Immunol 2002, 168:926-932.
  • [28]Aybay C, Imir T: Comparison of the effects of Salmonella minnesota Re595 lipopolysaccharide, lipid A and monophosphoryl lipid A on nitric oxide, TNF-alpha, and IL-6 induction from RAW 264.7 macrophages. FEMS Immunol Med Microbiol 1998, 22:263-373.
  • [29]Casella CR, Mitchell TC: Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci 2008 Oct, 65(20):3231-3240.
  • [30]Macagno A, Napolitani G, Lanzavecchia A, Sallusto F: Duration, combination and timing: the signal integration model of dendritic cell activation. Trends Immunol 2007, 28:227-233.
  • [31]Pulendran B, Tang H, Manicassamy S: Programming dendritic cells to induce TH2 and tolerogenic responses. Nat Immunol 2010, 11:647-655.
  • [32]Brenk M, Scheler M, Koch S, Neumann J, Takikawa O, Häcker G, Bieber T, von Bubnoff D: Tryptophan Deprivation Induces Inhibitory Receptors ILT3 and ILT4 on Dendritic Cells Favoring the Induction of Human CD4+CD25+ Foxp3+ T Regulatory Cells. J Immunol 2009, 183:145-154.
  • [33]Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T: Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 2012, 209:1201-1217.
  • [34]Hamdi H, Godot V, Maillot MC, Prejean MV, Cohen N, Krzysiek R, Lemoine FM, Zou W, Emilie D: Induction of antigen-specific regulatory T lymphocytes by human dendritic cells expressing the glucocorticoid-induced leucine zipper. Blood 2007, 110:211-219.
  • [35]Filippi CM, Ehrhardt K, Estes EA, Larsson P, Oldham JE, von Herrath MG: TLR2 signaling improves immunoregulation to prevent type 1 diabetes. Eur J Immunol 2011, 41:1399-1409.
  • [36]Kaliński P, Hilkens CMU, Wierenga EA, Kapsenberg ML: T-cell priming by type-1and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 1999, 20:561-567.
  • [37]Boks MA, Kager-Groenland JR, Haasjes MSP, Zwaginga JJ, van Ham SM, ten Brinke A: IL-10-generated tolerogenic dendritic cells are optimal for functional regulatory T cell induction — A comparative study of human clinical-applicable DC. Clin Immunol 2012, 142:332-342.
  • [38]Gárate D, Rojas-Colonelli N, Peña C, Salazar L, Abello P, Pesce B, Aravena O, García-González P, Ribeiro CH, Molina MC, Catalán D, Aguillón JC: The blocking of p38 and transforming growth factor-β receptor pathways impairs the ability of tolerogenic dendritic cells to suppress murine arthritis. Arthritis Rheum 2013, 65:120-129.
  • [39]Gregori S, Tomasoni D, Pacciani V, Scirpoli M, Battaglia M, Magnani CF, Hauben E, Roncarolo MG: Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10-dependent ILT4/HLA-G pathway. Blood 2010, 116:935-944.
  • [40]Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E, Kroemer G, Martin F, Chauffert B, Zitvogel L: Tumor cells convert immature myeloid dendritic cells into TGF-β–secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J Exp Med 2005, 202:919-929.
  • [41]Arce F, Breckpot K, Stephenson H, Karwacz K, Ehrenstein MR, Collins M, Escors D: Selective ERK activation differentiates mouse and human tolerogenic dendritic cells, expands antigen-specific regulatory T cells, and suppresses experimental inflammatory arthritis. Arthritis Rheum 2011, 63:84-95.
  • [42]Bosma BM, Metselaar HJ, Nagtzaam NMA, De Haan R, Mancham S, Van Der Laan LJW, Kuipers EJ, Kwekkeboom J: Dexamethasone transforms lipopolysaccharide-stimulated human blood myeloid dendritic cells into myeloid dendritic cells that prime interleukin-10 production in T cells. Immunology 2008, 125:91-100.
  • [43]Bhattacharya P, Gopisetty A, Ganesh BB, Sheng JR, Prabhakar BS: GM-CSF-induced, bone-marrow-derived dendritic cells can expand natural Tregs and induce adaptive Tregs by different mechanisms. J Leukocyte Biol 2011, 89:235-249.
  • [44]Levings MK, Gregori S, Tresoldi E, Cazzaniga S, Bonini C, Roncarolo MG: Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood 2005, 105:1162-1169.
  • [45]Kabashima K, Shiraishi N, Sugita K, Mori T, Onoue A, Kobayashi M, Sakabe J-i, Yoshiki R, Tamamura H, Fujii N, Inaba K, Tokura Y: CXCL12-CXCR4 Engagement Is Required for Migration of Cutaneous Dendritic Cells. Am J Pathol 2007, 171:1249-1257.
  • [46]Scandella E, Men Y, Gillessen S, Förster R, Groettrup M: Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood 2002, 100:1354-1361.
  • [47]De Becker G, Moulin V, Pajak B, Bruck C, Francotte M, Thiriart C, Urbain J, Moser M: The adjuvant monophosphoryl lipid A increases the function of antigen-presenting cells. Internat Immunol 2000, 12:807-815.
  • [48]Raïch-Regué D, Naranjo-Gómez M, Grau-López L, Ramo C, Pujol-Borrell R, Martínez-Cáceres E, Borràs FE: Differential effects of monophosphoryl lipid A and cytokine cocktail as maturation stimuli of immunogenic and tolerogenic dendritic cells for immunotherapy. Vaccine 2012, 30:378-387.
  • [49]Cekic C, Casella CR, Eaves CA, Matsuzawa A, Ichijo H, Mitchell TC: Selective Activation of the p38 MAPK Pathway by Synthetic Monophosphoryl Lipid A. J Biol Chem 2009, 284:31982-31991.
  文献评价指标  
  下载次数:20次 浏览次数:7次