BMC Veterinary Research | |
Comparison of three different sedative-anaesthetic protocols (ketamine, ketamine-medetomidine and alphaxalone) in common marmosets (Callithrix jacchus) | |
Jan AM Langermans1  Edmond J Remarque3  Herbert PM Brok1  Eva RJ Pelt2  Joost J Uilenreef2  Jaco Bakker1  | |
[1] Animal Science Department, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands;Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, University of Utrecht, Yalelaan 106, 3584 CM, Utrecht, The Netherlands;Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands | |
关键词: Sedation; Recovery; Medetomidine; Ketamine; Induction; Immobilisation; Common marmoset; Atipamezole; Alphaxalone; | |
Others : 1119525 DOI : 10.1186/1746-6148-9-113 |
|
received in 2013-01-15, accepted in 2013-06-03, 发布年份 2013 | |
【 摘 要 】
Background
Handling of common marmoset (Callithrix jacchus) usually requires chemical restraint. Ketamine has been associated with muscle damage in primates, while common marmosets, compared to other primates, additionally display an exceptional high sensitivity to ketamine-associated side-effects. Notably, muscle twitching movements of limbs and hands, and a marked increase in salivation are observed. We investigated two alternative intramuscular (i.m.) immobilisation protocols against ketamine (50 mg/kg; protocol 1) in a double-blind randomised crossover study in ten healthy adult common marmosets for use as a safe reliable, short-term immobilisation and sedation. These protocols comprised: alphaxalone (12 mg/kg; protocol 2) and 25 mg/kg ketamine combined with 0.50 mg/kg medetomidine (reversal with 2.5 mg/kg atipamezole; protocol 3A). Following completion and unblinding, the project was extended with an additional protocol (3B), comprising 25 mg/kg ketamine combined with 0.05 mg/kg medetomidine (reversal with 0.25 mg/kg atipamezole, twice with 35 min interval).
Results
All protocols in this study provided rapid onset (induction times <5 min) of immobilisation and sedation. Duration of immobilisation was 31.23 ± 22.39 min, 53.72 ± 13.08 min, 19.73 ± 5.74 min, and 22.78 ± 22.37 min for protocol 1, 2, 3A, and 3B, respectively. Recovery times were 135.84 ± 39.19 min, 55.79 ± 11.02 min, 405.46 ± 29.81 min, and 291.91 ± 80.34 min, respectively. Regarding the quality, and reliability (judged by pedal withdrawal reflex, palpebral reflex and muscle tension) of all protocols, protocol 2 was the most optimal. Monitored vital parameters were within clinically acceptable limits during all protocols and there were no fatalities. Indication of muscle damage as assessed by AST, LDH and CK values was most prominent elevated in protocol 1, 3A, and 3B.
Conclusions
We conclude that intramuscular administration of 12 mg/kg alphaxalone to common marmosets is preferred over other protocols studied. Protocol 2 resulted in at least comparable immobilisation quality with acceptable and less frequent side effects and superior recovery quality. In all protocols, supportive therapy, such as external heat support, remains mandatory. Notably, an unacceptable long recovery period in both ketamine/medetomidine protocols (subsequently reversed with atipamezole) was observed, showing that α-2 adrenoreceptor agonists in the used dose and dosing regime is not the first choice for sedation in common marmosets in a standard research setting.
【 授权许可】
2013 Bakker et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150208074245908.pdf | 1118KB | download | |
Figure 5. | 51KB | Image | download |
Figure 4. | 150KB | Image | download |
Figure 3. | 145KB | Image | download |
Figure 2. | 101KB | Image | download |
Figure 1. | 35KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Abbott DH, Barnett DK, Colman RJ, Yamamoto ME, Schultz-Darken NJ: Aspects of common marmoset basic biology and life history important for biomedical research. Comp Med 2003, 53(4):339-350.
- [2]Mansfield K: Marmoset models commonly used in biomedical research. Comp Med 2003, 53(4):383-392.
- [3]Flecknell PA: Laboratory Animal Anaesthesia. 2nd edition. London: Elsevier Academic Press; 1996.
- [4]Green CJ, Knight J, Precious S, Simpkin S: Ketamine alone and combined with diazepam or xylazine in laboratory animals: a 10 year experience. Lab Anim 1981, 15(2):163-170.
- [5]Hall LW, Clarke KW: Veterinary Anaesthesia. 9th edition. London, UK: Ballière Tindall; 1991.
- [6]Haskins SC, Farver TB, Patz JD: Ketamine in dogs. Am J Vet Res 1985, 46(9):1855-1860.
- [7]Davy CW, Trennery PN, Edmunds JG, Altman JF, Eichler DA: Local myotoxicity of ketamine hydrochloride in the marmoset. Lab Anim 1987, 21(1):60-67.
- [8]Kim CY, Lee HS, Han SC, Heo JD, Kwon MS, Ha CS, Han SS: Hematological and serum biochemical values in cynomolgus monkeys anesthetized with ketamine hydrochloride. J Med Primatol 2005, 34(2):96-100.
- [9]Lugo-Roman LA, Rico PJ, Sturdivant R, Burks R, Settle TL: Effects of serial anesthesia using ketamine or ketamine/medetomidine on hematology and serum biochemistry values in rhesus macaques (Macaca mulatta). J Med Primatol 2010, 39(1):41-49.
- [10]Phillips IR, Grist SM: Clinical use of CT1341 anaesthetic (“Saffan”) in marmosets (Callithrix jacchus). Lab Anim 1975, 9(1):57-60.
- [11]Child KJ, Currie JP, Dis B, Dodds MG, Pearce DR, Twissell DJ: The pharmacological properties in animals of CT1341–a new steroid anaesthetic agent. Br J Anaesth 1971, 43(1):2-13.
- [12]Muir W, Lerche P, Wiese A, Nelson L, Pasloske K, Whittem T: The cardiorespiratory and anesthetic effects of clinical and supraclinical doses of alfaxalone in cats. Vet Anaesth Analg 2009, 36(1):42-54.
- [13]Ferre PJ, Pasloske K, Whittem T, Ranasinghe MG, Li Q, Lefebvre HP: Plasma pharmacokinetics of alfaxalone in dogs after an intravenous bolus of Alfaxan-CD RTU. Vet Anaesth Analg 2006, 33(4):229-236.
- [14]Muir W, Lerche P, Wiese A, Nelson L, Pasloske K, Whittem T: Cardiorespiratory and anesthetic effects of clinical and supraclinical doses of alfaxalone in dogs. Vet Anaesth Analg 2008, 35(6):451-462.
- [15]Whittem T, Pasloske KS, Heit MC, Ranasinghe MG: The pharmacokinetics and pharmacodynamics of alfaxalone in cats after single and multiple intravenous administration of Alfaxan at clinical and supraclinical doses. J Vet Pharmacol Ther 2008, 31(6):571-579.
- [16]Carpenter RE, Grimm KA, Tranquilli WJ, Stewart MC: Preliminary report on the use of alfaxalone for anesthetic induction in goats. In Veterinary Midwest Anesthesia and Analgesia Conference 2005. Indianapolis, USA: San Francisco, USA: IARS; 2005. abstract
- [17]Grint NJ, Smith HE, Senior JM: Clinical evaluation of alfaxalone in cyclodextrin for the induction of anaesthesia in rabbits. Vet Rec 2008, 163(13):395-396.
- [18]Johnson R: The use of alfaxalone in reptiles. In Australian Veterinary Association Conference: 2005. Broadbeach, QLD, Australia: St Leonards NSW, Australia: AVA; 2005.
- [19]Keates H: Induction of anaesthesia in pigs using a new alphaxalone formulation. Vet Rec 2003, 153(20):627-628.
- [20]Kloppel H, Leece EA: Comparison of ketamine and alfaxalone for induction and maintenance of anaesthesia in ponies undergoing castration. Vet Anaesth Analg 2011, 38(1):37-43.
- [21]Leece EA, Girard NM, Maddern K: Alfaxalone in cyclodextrin for induction and maintenance of anaesthesia in ponies undergoing field castration. Vet Anaesth Analg 2009, 36(5):480-484.
- [22]Marsh MK, McLeod SR, Hansen A, Maloney SK: Induction of anaesthesia in wild rabbits using a new alfaxalone formulation. Vet Rec 2009, 164(4):122-123.
- [23]Cullen LK: Medetomidine sedation in dogs and cats: a review of its pharmacology, antagonism and dose. Br Vet J 1996, 152(5):519-535.
- [24]Sinclair MD: A review of the physiological effects of alpha2-agonists related to the clinical use of medetomidine in small animal practice. Can Vet J 2003, 44(11):885-897.
- [25]Verstegen J, Fargetton X, Ectors F: Medetomidine/ketamine anaesthesia in cats. Acta Vet Scand Suppl 1989, 85:117-123.
- [26]Young LE, Jones RS: Clinical observations on medetomidine/ketamine anaesthesia and its antagonism by atipamezole in the cat. JSAP 1990, 31(5):221-224.
- [27]Sun FJ, Wright DE, Pinson DM: Comparison of ketamine versus combination of ketamine and medetomidine in injectable anesthetic protocols: chemical immobilization in macaques and tissue reaction in rats. Contemp Top Lab Anim Sci 2003, 42(4):32-37.
- [28]Ferris CF, Snowdon CT, King JA, Sullivan JM Jr, Ziegler TE, Olson DP, Schultz-Darken NJ, Tannenbaum PL, Ludwig R, Wu Z, et al.: Activation of neural pathways associated with sexual arousal in non-human primates. JMRI 2004, 19(2):168-175.
- [29]Lee VK, Flynt KS, Haag LM, Taylor DK: Comparison of the effects of ketamine, ketamine-medetomidine, and ketamine-midazolam on physiologic parameters and anesthesia-induced stress in rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques. JAALAS 2010, 49(1):57-63.
- [30]Lewis JCM: Medetomidine-Ketamine Anaesthesia in the Chimpanzee (Pan Troglodytes). Vet Anaest Analg 2008, 20(1):18-20.
- [31]Selmi AL, Mendes GM, Figueiredo JP, Barbudo-Selmi GR, Lins BT: Comparison of medetomidine-ketamine and dexmedetomidine-ketamine anesthesia in golden-headed lion tamarins. Can Vet J 2004, 45(6):481-485.
- [32]Settle TL, Rico PJ, Lugo-Roman LA: The effect of daily repeated sedation using ketamine or ketamine combined with medetomidine on physiology and anesthetic characteristics in rhesus macaques. J Med Primatol 2010, 39(1):50-57.
- [33]Theriault BR, Reed DA, Niekrasz MA: Reversible medetomidine/ketamine anesthesia in captive capuchin monkeys (Cebus apella). J Med Primatol 2008, 37(Suppl 1):74-81.
- [34]Vie JC, De Thoisy B, Fournier P, Fournier-Chambrillon C, Genty C, Keravec J: Anesthesia of wild red howler monkeys (Alouatta seniculus) with medetomidine/ketamine and reversal by atipamezole. Am J Primatol 1998, 45(4):399-410.
- [35]Young SS, Schilling AM, Skeans S, Ritacco G: Short duration anaesthesia with medetomidine and ketamine in cynomolgus monkeys. Lab Anim 1999, 33(2):162-168.
- [36]Unwin S: Anaesthesia. In The Laboratory Primate (Handbook of Experimental Animals). Edited by Wolfe-Coote S. Amsterdam: Elsevier Academic Press; 2005:275-292.
- [37]Rensing S, Oerke AK: Husbandry and Management of New World Species: Marmosets and Tamarins. In The Laboratory Primate. Edited by Wolfe-Coote S. Amsterdam: Elsevier; 2005:145-162.
- [38]Thomas AA, Leach MC, Flecknell PA: An alternative method of endotracheal intubation of common marmosets (Callithrix jacchus). Lab Anim 2012, 46(1):71-76.
- [39]Vainio O: Introduction to the clinical pharmacology of medetomidine. Acta Vet Scand Suppl 1989, 85:85-88.
- [40]Capuano SV 3rd, Lerche NW, Valverde CR: Cardiovascular, respiratory, thermoregulatory, sedative, and analgesic effects of intravenous administration of medetomidine in rhesus macaques (Macaca mulatta). Lab Anim Sci 1999, 49(5):537-544.
- [41]Schnell CR, Wood JM: Measurement of blood pressure and heart rate by telemetry in conscious unrestrained marmosets. Lab Anim 1993, 29:258-261.
- [42]Keegan RD, Greene SA, Bagley RS, Moore MP, Weil AB, Short CE: Effects of medetomidine administration on intracranial pressure and cardiovascular variables of isoflurane-anesthetized dogs. Am J Vet Res 1995, 56(2):193-198.
- [43]Feiner JR, Severinghaus JW, Bickler PE: Dark skin decreases the accuracy of pulse oximeters at low oxygen saturation: the effects of oximeter probe type and gender San Francisco, USA. Anesth Analg 2007, 105(6 Suppl):S18-S23.
- [44]Fortman JD, Hewett TA, Bennett BT: The Laboratory Nonhuman Primate. Boca Raton: CRC Press; 2001.