期刊论文详细信息
Journal of Neuroinflammation
Neuroprotective function for ramified microglia in hippocampal excitotoxicity
Knut Biber4  Hendrikus WGM Boddeke2  Nico van Rooijen3  Frank L Heppner1  Nieske Brouwer2  Anja Wegner1  Roland E Kälin1  Annette Heinrich4  Hilmar RJ van Weering2  Jonathan Vinet2 
[1] Department of Neuropathology, Charité-Universitätsmedizin Berlin, Berlin, Germany;Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen (UMCG), Rijksuniversiteit Groningen (RUG), Groningen, The Netherlands;Department of Molecular Cell biology, Free University Medical Center (VUMC), Amsterdam, The Netherlands;Department of Psychiatry and Psychotherapy, Section of Molecular Psychiatry, University of Freiburg, Freiburg, Germany
关键词: Ganciclovir;    Clodronate;    Organotypic hippocampal slice cultures;    Excitotoxicity;    NMDA;    Microglia;   
Others  :  1212817
DOI  :  10.1186/1742-2094-9-27
 received in 2011-11-09, accepted in 2012-01-31,  发布年份 2012
PDF
【 摘 要 】

Background

Most of the known functions of microglia, including neurotoxic and neuroprotective properties, are attributed to morphologically-activated microglia. Resting, ramified microglia are suggested to primarily monitor their environment including synapses. Here, we show an active protective role of ramified microglia in excitotoxicity-induced neurodegeneration.

Methods

Mouse organotypic hippocampal slice cultures were treated with N-methyl-D-aspartic acid (NMDA) to induce excitotoxic neuronal cell death. This procedure was performed in slices containing resting microglia or slices that were chemically or genetically depleted of their endogenous microglia.

Results

Treatment of mouse organotypic hippocampal slice cultures with 10-50 μM N-methyl-D-aspartic acid (NMDA) induced region-specific excitotoxic neuronal cell death with CA1 neurons being most vulnerable, whereas CA3 and DG neurons were affected less. Ablation of ramified microglia severely enhanced NMDA-induced neuronal cell death in the CA3 and DG region rendering them almost as sensitive as CA1 neurons. Replenishment of microglia-free slices with microglia restored the original resistance of CA3 and DG neurons towards NMDA.

Conclusions

Our data strongly suggest that ramified microglia not only screen their microenvironment but additionally protect hippocampal neurons under pathological conditions. Morphological activation of ramified microglia is thus not required to influence neuronal survival.

【 授权许可】

   
2012 Vinet et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150614104647740.pdf 13241KB PDF download
Figure 6. 52KB Image download
Figure 5. 134KB Image download
Figure 4. 136KB Image download
Figure 3. 132KB Image download
Figure 2. 142KB Image download
Figure 1. 95KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Bechmann I, Galea I, Perry VH: What is the blood-brain barrier (not)? Trends Immunol 2007, 28:5-11.
  • [2]Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996, 19:312-318.
  • [3]Van Rossum D, Hanisch UK: Microglia. Metab Brain Dis 2004, 19:393-411.
  • [4]Hanisch UK, Kettenmann H: Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007, 10:1387-1394.
  • [5]Streit WJ: Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 2002, 40:133-139.
  • [6]Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB: ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005, 8:752-758.
  • [7]Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D: The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 2006, 9:1512-1519.
  • [8]Nimmerjahn A, Kirchhoff F, Helmchen F: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308:1314-1318.
  • [9]Hailer NP, Grampp A, Nitsch R: Proliferation of microglia and astrocytes in the dentate gyrus following entorhinal cortex lesion: a quantitative bromodeoxyuridine-labelling study. Eur J Neurosci 1999, 11:3359-3364.
  • [10]O'Donnell SL, Frederick TJ, Krady JK, Vannucci SJ, Wood TL: IGF-I and microglia/macrophage proliferation in the ischemic mouse brain. Glia 2002, 39:85-97.
  • [11]Hanisch UK: Microglia as a source and target of cytokines. Glia 2002, 40:140-155.
  • [12]Schwartz M, Butovsky O, Bruck W, Hanisch UK: Microglial phenotype: is the commitment reversible? Trends Neurosci 2006, 29:68-74.
  • [13]Turrin NP, Rivest S: Tumor necrosis factor alpha but not interleukin 1 beta mediates neuroprotection in response to acute nitric oxide excitotoxicity. J Neurosci 2006, 26:143-151.
  • [14]Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J: Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 2007, 27:2596-2605.
  • [15]Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW: Onset and progression in inherited ALS determined by motor neurons and microglia. Science 2006, 312:1389-1392.
  • [16]El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 2007, 13:432-438.
  • [17]Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, et al.: Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 2006, 9:917-924.
  • [18]Neumann H, Takahashi K: Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol 2007, 184:92-99.
  • [19]Streit WJ: Microglial senescence: does the brain's immune system have an expiration date? Trends Neurosci 2006, 29:506-510.
  • [20]Tremblay ME, Lowery RL, Majewska AK: Microglial interactions with synapses are modulated by visual experience. PLoS Biol 2010, 8:e1000527.
  • [21]Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, Fariss RN, Li W, Wong WT: Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 2011, 6:e15973.
  • [22]Kohl A, Dehghani F, Korf HW, Hailer NP: The bisphosphonate clodronate depletes microglial cells in excitotoxically injured organotypic hippocampal slice cultures. Exp Neurol 2003, 181:1-11.
  • [23]Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M: Microglia promote the death of developing Purkinje cells. Neuron 2004, 41:535-547.
  • [24]Markovic DS, Glass R, Synowitz M, Rooijen N, Kettenmann H: Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J Neuropathol Exp Neurol 2005, 64:754-762.
  • [25]Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T, Prinz M, Priller J, et al.: Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 2005, 11:146-152.
  • [26]Van Rooijen N, Sanders A: Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 1994, 174:83-93.
  • [27]Stoppini L, Buchs PA, Muller D: A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 1991, 37:173-182.
  • [28]de Jong EK, Vinet J, Stanulovic VS, Meijer M, Wesseling E, Sjollema K, Boddeke HW, Biber K: Expression, transport, and axonal sorting of neuronal CCL21 in large dense-core vesicles. FASEB J 2008, 22:4136-4145.
  • [29]Biber K, Klotz KN, Berger M, Gebicke-Harter PJ, van Calker D: Adenosine A1 receptor-mediated activation of phospholipase C in cultured astrocytes depends on the level of receptor expression. J Neurosci 1997, 17:4956-4964.
  • [30]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25:402-408.
  • [31]Pozzo Miller LD, Mahanty NK, Connor JA, Landis DM: Spontaneous pyramidal cell death in organotypic slice cultures from rat hippocampus is prevented by glutamate receptor antagonists. Neuroscience 1994, 63:471-487.
  • [32]Vornov JJ, Tasker RC, Coyle JT: Direct observation of the agonist-specific regional vulnerability to glutamate, NMDA, and kainate neurotoxicity in organotypic hippocampal cultures. Exp Neurol 1991, 114:11-22.
  • [33]van Weering HR, Boddeke HW, Vinet J, Brouwer N, de Haas AH, van Rooijen N, Thomsen AR, Biber KP: CXCL10/CXCR3 signaling in glia cells differentially affects NMDA-induced cell death in CA and DG neurons of the mouse hippocampus. Hippocampus 2011, 21:220-232.
  • [34]Kirino T, Sano K: Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol 1984, 62:201-208.
  • [35]Horn M, Schlote W: Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia. Acta Neuropathol 1992, 85:79-87.
  • [36]Acarin L, Gonzalez B, Castellano B, Castro AJ: Microglial response to N-methyl-D-aspartate-mediated excitotoxicity in the immature rat brain. J Comp Neurol 1996, 367:361-374.
  • [37]Schauwecker PE: Modulation of cell death by mouse genotype: differential vulnerability to excitatory amino acid-induced lesions. Exp Neurol 2002, 178:219-235.
  • [38]Won SJ, Ko HW, Kim EY, Park EC, Huh K, Jung NP, Choi I, Oh YK, Shin HC, Gwag BJ: Nuclear factor kappa B-mediated kainate neurotoxicity in the rat and hamster hippocampus. Neuroscience 1999, 94:83-91.
  • [39]Gee CE, Benquet P, Raineteau O, Rietschin L, Kirbach SW, Gerber U: NMDA receptors and the differential ischemic vulnerability of hippocampal neurons. Eur J Neurosci 2006, 23:2595-2603.
  • [40]Boscia F, Annunziato L, Taglialatela M: Retigabine and flupirtine exert neuroprotective actions in organotypic hippocampal cultures. Neuropharmacology 2006, 51:283-294.
  • [41]Cronberg T, Jensen K, Rytter A, Wieloch T: Selective sparing of hippocampal CA3 cells following in vitro ischemia is due to selective inhibition by acidosis. Eur J Neurosci 2005, 22:310-316.
  • [42]Keynes RG, Duport S, Garthwaite J: Hippocampal neurons in organotypic slice culture are highly resistant to damage by endogenous and exogenous nitric oxide. Eur J Neurosci 2004, 19:1163-1173.
  • [43]Kristensen BW, Noraberg J, Zimmer J: Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures. Brain Res 2001, 917:21-44.
  • [44]Strasser U, Fischer G: Quantitative measurement of neuronal degeneration in organotypic hippocampal cultures after combined oxygen/glucose deprivation. J Neurosci Methods 1995, 57:177-186.
  • [45]Ikegaya Y, Matsuki N: Regionally selective neurotoxicity of NMDA and colchicine is independent of hippocampal neural circuitry. Neuroscience 2002, 113:253-256.
  • [46]Martens U, Capito B, Wree A: Septotemporal distribution of [3H]MK-801, [3H]AMPA and [3H]Kainate binding sites in the rat hippocampus. Anat Embryol (Berl) 1998, 198:195-204.
  • [47]Coultrap SJ, Nixon KM, Alvestad RM, Valenzuela CF, Browning MD: Differential expression of NMDA receptor subunits and splice variants among the CA1, CA3 and dentate gyrus of the adult rat. Brain Res Mol Brain Res 2005, 135:104-111.
  • [48]Mirrione MM, Konomos DK, Gravanis I, Dewey SL, Aguzzi A, Heppner FL, Tsirka SE: Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice. Neurobiol Dis 2010, 39:85-97.
  • [49]Chen Y, Chad JE, Cannon RC, Wheal HV: Reduced Mg2+ blockade of synaptically activated N-methyl-D-aspartate receptor-channels in CA1 pyramidal neurons in kainic acid-lesioned rat hippocampus. Neuroscience 1999, 88:727-739.
  • [50]Grishin AA, Gee CE, Gerber U, Benquet P: Differential calcium-dependent modulation of NMDA currents in CA1 and CA3 hippocampal pyramidal cells. J Neurosci 2004, 24:350-355.
  • [51]Sakaguchi T, Okada M, Kuno M, Kawasaki K: Dual mode of N-methyl-D-aspartate-induced neuronal death in hippocampal slice cultures in relation to N-methyl-D-aspartate receptor properties. Neuroscience 1997, 76:411-423.
  • [52]Grathwohl SA, Kalin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, Odenthal J, Radde R, Eldh T, Gandy S, et al.: Formation and maintenance of Alzheimer's disease beta-amyloid plaques in the absence of microglia. Nat Neurosci 2009, 12:1361-1363.
  • [53]Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H, Sawada M: Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 2007, 27:488-500.
  • [54]Kitamura Y, Takata K, Inden M, Tsuchiya D, Yanagisawa D, Nakata J, Taniguchi T: Intracerebroventricular injection of microglia protects against focal brain ischemia. J Pharmacol Sci 2004, 94:203-206.
  • [55]Montero M, Gonzalez B, Zimmer J: Immunotoxic depletion of microglia in mouse hippocampal slice cultures enhances ischemia-like neurodegeneration. Brain Res 2009, 1291:140-152.
  • [56]Rio-Hortega PD, Rio-Hortega PD: Microglia. In In Cytology and cellular pathology of the nervous system. Edited by Penfield W. New York: Hoeber; 1932:482-534.
  • [57]Bernardino L, Xapelli S, Silva AP, Jakobsen B, Poulsen FR, Oliveira CR, Vezzani A, Malva JO, Zimmer J: Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J Neurosci 2005, 25:6734-6744.
  • [58]Lauro C, Cipriani R, Catalano M, Trettel F, Chece G, Brusadin V, Antonilli L, van Rooijen N, Eusebi F, Fredholm BB, Limatola C: Adenosine A1 receptors and microglial cells mediate CX3CL1-induced protection of hippocampal neurons against Glu-induced death. Neuropsychopharmacology 2010, 35:1550-1559.
  • [59]Boscia F, Esposito CL, Di Crisci A, de Franciscis V, Annunziato L, Cerchia L: GDNF selectively induces microglial activation and neuronal survival in CA1/CA3 hippocampal regions exposed to NMDA insult through Ret/ERK signalling. PLoS One 2009, 4:e6486.
  • [60]Palazuelos J, Aguado T, Pazos MR, Julien B, Carrasco C, Resel E, Sagredo O, Benito C, Romero J, Azcoitia I, et al.: Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity. Brain 2009, 132:3152-3164.
  • [61]Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH, Haugaard LS, Wirenfeldt M, Nielsen M, Dagnaes-Hansen F, et al.: Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 2009, 29:1319-1330.
  • [62]Narantuya D, Nagai A, Sheikh AM, Masuda J, Kobayashi S, Yamaguchi S, Kim SU: Human microglia transplanted in rat focal ischemia brain induce neuroprotection and behavioral improvement. PLoS One 2010, 5:e11746.
  • [63]Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K: Microglia provide neuroprotection after ischemia. FASEB J 2006, 20:714-716.
  • [64]Murugan M, Sivakumar V, Lu J, Ling EA, Kaur C: Expression of N-methyl D-aspartate receptor subunits in amoeboid microglia mediates production of nitric oxide via NF-kappaB signaling pathway and oligodendrocyte cell death in hypoxic postnatal rats. Glia 2011, 59:521-539.
  • [65]Olah M, Amor S, Brouwer N, Vinet J, Eggen B, Biber K, Boddeke HW: Identification of a microglia phenotype supportive of remyelination. Glia 2011, 60:306-321.
  • [66]Olah M, Biber K, Vinet J, Boddeke HW: Microglia phenotype diversity. CNS Neurol Disord Drug Targets 2011, 10:108-118.
  • [67]Biber K, Neumann H, Inoue K, Boddeke HW: Neuronal'On' and'Off' signals control microglia. Trends Neurosci 2007, 30:596-602.
  • [68]Elkabes S, DiCicco-Bloom EM, Black IB: Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 1996, 16:2508-2521.
  • [69]Xapelli S, Bernardino L, Ferreira R, Grade S, Silva AP, Salgado JR, Cavadas C, Grouzmann E, Poulsen FR, Jakobsen B, et al.: Interaction between neuropeptide Y (NPY) and brain-derived neurotrophic factor in NPY-mediated neuroprotection against excitotoxicity: a role for microglia. Eur J Neurosci 2008, 27:2089-2102.
  文献评价指标  
  下载次数:36次 浏览次数:10次