| Journal of Ovarian Research | |
| Thailandepsins are new small molecule class I HDAC inhibitors with potent cytotoxic activity in ovarian cancer cells: a preclinical study of epigenetic ovarian cancer therapy | |
| Dineo Khabele3  Yi-Qiang Cheng2  Andrew J Wilson1  | |
| [1] Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, 21st Avenue South, B-1100 Medical Center North, Nashville, TN 37232, USA;Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA;Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 691 Preston Building, Nashville, TN 37232, USA | |
| 关键词: Ovarian cancer; Romidepsin; Thailandepsins; HDAC inhibitors; | |
| Others : 815124 DOI : 10.1186/1757-2215-5-12 |
|
| received in 2012-03-02, accepted in 2012-04-24, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
New treatment strategies are emerging to target DNA damage response pathways in ovarian cancer. Our group has previously shown that the class I biased HDAC inhibitor romidepsin (FK228) induces DNA damage response and has potent cytotoxic effects in ovarian cancer cells. Here, we investigated newly discovered HDAC inhibitors, thailandepsin A (TDP-A) and thailandepsin B (TDP-B), to determine the effects on cell viability, apoptosis and DNA damage response in ovarian cancer cells.
Methods
FK228, TDP-A and TDP-B were tested in five ovarian cancer cell lines. Cellular viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Immunofluorescence assays were used to assess activated caspase 3. Western blots were performed to detect protein expression of PARP cleavage, pH2AX, P-glycoprotein and tubulin acetylation.
Results
Treatment with TDPs decreased cell viability at nanonomolar concentrations in four of the five ovarian cancer cell lines studied. Similar to FK228, both TDP compounds exerted minimal effects on NCI/ADR-RES ovarian cancer cells. Across the four cell lines sensitive to the TDPs, TDP-B consistently had a greater inhibitory effect than TDP-A on cell viability. TDP-B also had relatively greater effects on promoting cell apoptosis and induction of pH2AX (a mark of DNA damage response), than TDP-A. These antitumor effects of TDP-B were of similar magnitude to those induced by an equal concentration of FK228. Similar to FK228, the nanomolar concentrations of the TDPs had little effect on tubulin acetylation (a mark of class II HDAC6 inhibition).
Conclusions
The new small molecule HDAC inhibitors TDP-A and TDP-B are FK228 analogues that suppress cell viability and induce apoptosis at nanomolar drug concentrations. TDP-B showed the most similarity to the biological activity of FK228 with greater cytotoxic effects than TDP-A in vitro. Our results indicate that FK228-like small molecule class I HDAC-biased HDAC inhibitors have therapeutic potential for ovarian cancer.
【 授权许可】
2012 Wilson et al; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140710054817114.pdf | 697KB | ||
| Figure 5. | 26KB | Image | |
| Figure 4. | 31KB | Image | |
| Figure 3. | 68KB | Image | |
| Figure 2. | 36KB | Image | |
| Figure 1. | 34KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin 2012, 62:10-29.
- [2]TCGA: Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474:609-615.
- [3]Frew AJ, Johnstone RW, Bolden JE: Enhancing the apoptotic and therapeutic effects of HDAC inhibitors. Cancer Lett 2009, 280:125-133.
- [4]Haberland M, Montgomery RL, Olson EN: The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009, 10:32-42.
- [5]Bhaskara S, Chyla BJ, Amann JM, Knutson SK, Cortez D, Sun ZW, Hiebert SW: Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell 2008, 30:61-72.
- [6]Conti C, Leo E, Eichler GS, Sordet O, Martin MM, Fan A, Aladjem MI, Pommier Y: Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage. Cancer Res 2010, 70:4470-4480.
- [7]Bhaskara S, Knutson SK, Jiang G, Chandrasekharan MB, Wilson AJ, Zheng S, Yenamandra A, Locke K, Yuan JL, Bonine-Summers AR, et al.: Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell 2010, 18:436-447.
- [8]Wilson AJ, Holson E, Wagner F, Zhang YL, Fass DM, Haggarty SJ, Bhaskara S, Hiebert SW, Schreiber SL, Khabele D: The DNA damage mark pH2AX differentiates the cytotoxic effects of small molecule HDAC inhibitors in ovarian cancer cells. Cancer Biol Ther 2011, 12:484-493.
- [9]Piekarz RL, Frye R, Turner M, Wright JJ, Allen SL, Kirschbaum MH, Zain J, Prince HM, Leonard JP, Geskin LJ, et al.: Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol 2009, 27:5410-5417.
- [10]Piekarz RL, Frye R, Prince HM, Kirschbaum MH, Zain J, Allen SL, Jaffe ES, Ling A, Turner M, Peer CJ, et al.: Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood 2011, 117:5827-5834.
- [11]Furumai R, Matsuyama A, Kobashi N, Lee KH, Nishiyama M, Nakajima H, Tanaka A, Komatsu Y, Nishino N, Yoshida M, Horinouchi S: FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res 2002, 62:4916-4921.
- [12]Wang C, Henkes LM, Doughty LB, He M, Wang D, Meyer-Almes FJ, Cheng YQ: Thailandepsins: bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities. J Nat Prod 2011, 74:2031-2038.
- [13]Khabele D, Son DS, Parl AK, Goldberg GL, Augenlicht LH, Mariadason JM, Rice VM: Drug-induced inactivation or gene silencing of class I histone deacetylases suppresses ovarian cancer cell growth: implications for therapy. Cancer Biol Ther 2007, 6:795-801.
- [14]Lorenzi PL, Reinhold WC, Varma S, Hutchinson AA, Pommier Y, Chanock SJ, Weinstein JN: DNA fingerprinting of the NCI-60 cell line panel. Mol Cancer Ther 2009, 8:713-724.
- [15]Scudiero DA, Monks A, Sausville EA: Cell line designation change: multidrug-resistant cell line in the NCI anticancer screen. J Natl Cancer Inst 1998, 90:862.
- [16]DelloRusso C, Welcsh PL, Wang W, Garcia RL, King MC, Swisher EM: Functional characterization of a novel BRCA1-null ovarian cancer cell line in response to ionizing radiation. Mol Cancer Res 2007, 5:35-45.
- [17]Wilson AJ, Arango D, Mariadason JM, Heerdt BG, Augenlicht LH: TR3/Nur77 in colon cancer cell apoptosis. Cancer Res 2003, 63:5401-5407.
- [18]Wilson AJ, Byun DS, Nasser S, Murray LB, Ayyanar K, Arango D, Figueroa M, Melnick A, Kao GD, Augenlicht LH, Mariadason JM: HDAC4 promotes growth of colon cancer cells via repression of p21. Mol Biol Cell 2008, 19:4062-4075.
- [19]Xiao JJ, Huang Y, Dai Z, Sadee W, Chen J, Liu S, Marcucci G, Byrd J, Covey JM, Wright J, et al.: Chemoresistance to depsipeptide FK228 [(E)-(1S,4S,10S,21R)-7-[(Z)-ethylidene]-4,21-diisopropyl-2-oxa-12,13-dithi a-5,8,20,23-tetraazabicyclo[8,7,6]-tricos-16-ene-3,6,9,22-pentanone] is mediated by reversible MDR1 induction in human cancer cell lines. J Pharmacol Exp Ther 2005, 314:467-475.
- [20]Xiao JJ, Foraker AB, Swaan PW, Liu S, Huang Y, Dai Z, Chen J, Sadee W, Byrd J, Marcucci G, Chan KK: Efflux of depsipeptide FK228 (FR901228, NSC-630176) is mediated by P-glycoprotein and multidrug resistance-associated protein 1. J Pharmacol Exp Ther 2005, 313:268-276.
- [21]Tabe Y, Konopleva M, Contractor R, Munsell M, Schober WD, Jin L, Tsutsumi-Ishii Y, Nagaoka I, Igari J, Andreeff M: Up-regulation of MDR1 and induction of doxorubicin resistance by histone deacetylase inhibitor depsipeptide (FK228) and ATRA in acute promyelocytic leukemia cells. Blood 2006, 107:1546-1554.
- [22]Banath JP, Klokov D, MacPhail SH, Banuelos CA, Olive PL: Residual gammaH2AX foci as an indication of lethal DNA lesions. BMC Cancer 2010, 10:4. BioMed Central Full Text
- [23]Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP: HDAC6 is a microtubule-associated deacetylase. Nature 2002, 417:455-458.
- [24]Watson PJ, Fairall L, Santos GM, Schwabe JW: Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 2012, 481:335-340.
- [25]Benelkebir H, Donlevy AM, Packham G, Ganesan A: Total synthesis and stereochemical assignment of burkholdac B, a depsipeptide HDAC inhibitor. Org Lett 2011, 13:6334-6337.
- [26]Luchenko VL, Salcido CD, Zhang Y, Agama K, Komlodi-Pasztor E, Murphy RF, Giaccone G, Pommier Y, Bates SE, Varticovski L: Schedule-dependent synergy of histone deacetylase inhibitors with DNA damaging agents in small cell lung cancer. Cell Cycle 2011, 10:3119-3128.
- [27]Konstantinopoulos PA, Vandoros GP, Papavassiliou AG: FK228 (depsipeptide): a HDAC inhibitor with pleiotropic antitumor activities. Cancer Chemother Pharmacol 2006, 58:711-715.
- [28]Modesitt SC, Parsons SJ: In vitro and in vivo histone deacetylase inhibitor therapy with vorinostat and paclitaxel in ovarian cancer models: does timing matter? Gynecol Oncol 2010, 119:351-357.
- [29]Lee JH, Choy ML, Ngo L, Foster SS, Marks PA: Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc Natl Acad Sci USA 2010, 107:14639-14644.
PDF