Epigenetics & Chromatin | |
H3K9me3-binding proteins are dispensable for SETDB1/H3K9me3-dependent retroviral silencing | |
Matthew C Lorincz1  Prim B Singh3  Dixie L Mager2  Misha Bilenky4  Jeremy P Brown3  Jörn Bullwinkel3  Preeti Goyal1  Irina A Maksakova1  | |
[1] Department of Medical Genetics, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3;Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, Canada, V5Z 1L3;Division of Immunoepigenetics, Department of Immunology and Cell Biology, Research Center Borstel, Parkallee 22, D-23845 Borstel, Germany;Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada | |
关键词: mouse embryonic stem cells; transcriptional silencing; retroviral repression; H3K9me3; Cbx5; Cbx3; Cbx1; HP1; heterochromatin protein 1; ERV; endogenous retrovirus; | |
Others : 823551 DOI : 10.1186/1756-8935-4-12 |
|
received in 2011-04-21, accepted in 2011-07-20, 发布年份 2011 | |
【 摘 要 】
Background
Endogenous retroviruses (ERVs) are parasitic sequences whose derepression is associated with cancer and genomic instability. Many ERV families are silenced in mouse embryonic stem cells (mESCs) via SETDB1-deposited trimethylated lysine 9 of histone 3 (H3K9me3), but the mechanism of H3K9me3-dependent repression remains unknown. Multiple proteins, including members of the heterochromatin protein 1 (HP1) family, bind H3K9me2/3 and are involved in transcriptional silencing in model organisms. In this work, we address the role of such H3K9me2/3 "readers" in the silencing of ERVs in mESCs.
Results
We demonstrate that despite the reported function of HP1 proteins in H3K9me-dependent gene repression and the critical role of H3K9me3 in transcriptional silencing of class I and class II ERVs, the depletion of HP1α, HP1β and HP1γ, alone or in combination, is not sufficient for derepression of these elements in mESCs. While loss of HP1α or HP1β leads to modest defects in DNA methylation of ERVs or spreading of H4K20me3 into flanking genomic sequence, respectively, neither protein affects H3K9me3 or H4K20me3 in ERV bodies. Furthermore, using novel ERV reporter constructs targeted to a specific genomic site, we demonstrate that, relative to Setdb1, knockdown of the remaining known H3K9me3 readers expressed in mESCs, including Cdyl, Cdyl2, Cbx2, Cbx7, Mpp8, Uhrf1 and Jarid1a-c, leads to only modest proviral reactivation.
Conclusion
Taken together, these results reveal that each of the known H3K9me3-binding proteins is dispensable for SETDB1-mediated ERV silencing. We speculate that H3K9me3 might maintain ERVs in a silent state in mESCs by directly inhibiting deposition of active covalent histone marks.
【 授权许可】
2011 Maksakova et al; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140713010315690.pdf | 2996KB | download | |
Figure 6. | 80KB | Image | download |
Figure 5. | 105KB | Image | download |
Figure 4. | 128KB | Image | download |
Figure 3. | 123KB | Image | download |
Figure 2. | 59KB | Image | download |
Figure 1. | 60KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]International Mouse Genome Sequencing Consortium: Initial sequencing and comparative analysis of the mouse genome. Nature 2002, 420:520-562.
- [2]International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. Nature 2001, 409:860-921.
- [3]Stocking C, Kozak C: Endogenous retroviruses. Cell Mol Life Sci 2008, 65:3383-3398.
- [4]Gifford R, Kabat P, Martin J, Lynch C, Tristem M: Evolution and distribution of class II-related endogenous retroviruses. J Virol 2005, 79:6478-6486.
- [5]Gimenez J, Montgiraud C, Pichon JP, Bonnaud B, Arsac M, Ruel K, Bouton O, Mallet F: Custom human endogenous retroviruses dedicated microarray identifies self-induced HERV-W family elements reactivated in testicular cancer upon methylation control. Nucleic Acids Res 2010, 38:2229-2246.
- [6]Lamprecht B, Walter K, Kreher S, Kumar R, Hummel M, Lenze D, Köchert K, Bouhlel MA, Richter J, Soler E, Stadhouders R, Jöhrens K, Wurster KD, Callen DF, Harte MF, Giefing M, Barlow R, Stein H, Anagnostopoulos I, Janz M, Cockerill PN, Siebert R, Dörken B, Bonifer C, Mathas S: Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med 2010, 16:571-579.
- [7]Moyes D, Griffiths DJ, Venables PJ: Insertional polymorphisms: a new lease of life for endogenous retroviruses in human disease. Trends Genet 2007, 23:326-333.
- [8]McLaughlin-Drubin ME, Munger K: Viruses associated with human cancer. Biochim Biophys Acta 2008, 1782:127-150.
- [9]Howard G, Eiges R, Gaudet F, Jaenisch R, Eden A: Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 2008, 27:404-408.
- [10]Lee JS, Haruna T, Ishimoto A, Honjo T, Yanagawa S: Intracisternal type A particle-mediated activation of the Notch4/int3 gene in a mouse mammary tumor: generation of truncated Notch4/int3 mRNAs by retroviral splicing events. J Virol 1999, 73:5166-5171.
- [11]Romanish MT, Cohen CJ, Mager DL: Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Semin Cancer Biol 2010, 20:246-253.
- [12]Puech A, Dupressoir A, Loireau MP, Mattei MG, Heidmann T: Characterization of two age-induced intracisternal A-particle-related transcripts in the mouse liver: transcriptional read-through into an open reading frame with similarities to the yeast ccr4 transcription factor. J Biol Chem 1997, 272:5995-6003.
- [13]Barbot W, Dupressoir A, Lazar V, Heidmann T: Epigenetic regulation of an IAP retrotransposon in the aging mouse: progressive demethylation and de-silencing of the element by its repetitive induction. Nucleic Acids Res 2002, 30:2365-2373.
- [14]Goff SP: Retrovirus restriction factors. Mol Cell 2004, 16:849-859.
- [15]Yoder JA, Walsh CP, Bestor TH: Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 1997, 13:335-340.
- [16]Walsh CP, Chaillet JR, Bestor TH: Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 1998, 20:116-117.
- [17]Martens JH, O'Sullivan RJ, Braunschweig U, Opravil S, Radolf M, Steinlein P, Jenuwein T: The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J 2005, 24:800-812.
- [18]Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O'Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007, 448:553-560.
- [19]Karimi MM, Goyal P, Maksakova IA, Bilenky M, Leung D, Tang JX, Shinkai Y, Mager DL, Jones S, Hirst M, Lorincz MC: DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 2011, 8:676-687.
- [20]Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, Tachibana M, Lorincz MC, Shinkai Y: Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 2010, 464:927-931.
- [21]Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S, Aktas T, Maillard PV, Layard-Liesching H, Verp S, Marquis J, Spitz F, Constam DB, Trono D: KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 2010, 463:237-240.
- [22]Wolf D, Goff SP: Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 2009, 458:1201-1204.
- [23]Hutnick LK, Huang X, Loo TC, Ma Z, Fan G: Repression of retrotransposal elements in mouse embryonic stem cells is primarily mediated by a DNA methylation-independent mechanism. J Biol Chem 2010, 285:21082-21091.
- [24]Maksakova IA, Romanish MT, Gagnier L, Dunn CA, van de Lagemaat LN, Mager DL: Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet 2006, 2:e2.
- [25]Macfarlan TS, Gifford WD, Agarwal S, Driscoll S, Lettieri K, Wang J, Andrews SE, Franco L, Rosenfeld MG, Ren B, Pfaff SL: Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev 2011, 25:594-607.
- [26]Tse C, Sera T, Wolffe AP, Hansen JC: Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol Cell Biol 1998, 18:4629-4638.
- [27]Krajewski WA: Histone hyperacetylation facilitates chromatin remodelling in a Drosophila embryo cell-free system. Mol Gen Genet 2000, 263:38-47.
- [28]Strahl BD, Allis CD: The language of covalent histone modifications. Nature 2000, 403:41-45.
- [29]Jenuwein T, Allis CD: Translating the histone code. Science 2001, 293:1074-1080.
- [30]Wysocka J: Identifying novel proteins recognizing histone modifications using peptide pull-down assay. Methods 2006, 40:339-343.
- [31]Daniel JA, Pray-Grant MG, Grant PA: Effector proteins for methylated histones: an expanding family. Cell Cycle 2005, 4:919-926.
- [32]Zeng W, Ball AR Jr, Yokomori K: HP1: heterochromatin binding proteins working the genome. Epigenetics 2010, 5:287-292.
- [33]Vermaak D, Malik HS: Multiple roles for heterochromatin protein 1 genes in Drosophila. Annu Rev Genet 2009, 43:467-492.
- [34]Kwon SH, Workman JL: The changing faces of HP1: from heterochromatin formation and gene silencing to euchromatic gene expression. HP1 acts as a positive regulator of transcription. Bioessays 2011, 33:280-289.
- [35]Singh PB, Georgatos SD: HP1: facts, open questions, and speculation. J Struct Biol 2002, 140:10-16.
- [36]Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001, 410:120-124.
- [37]Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001, 410:116-120.
- [38]Nielsen AL, Oulad-Abdelghani M, Ortiz JA, Remboutsika E, Chambon P, Losson R: Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol Cell 2001, 7:729-739.
- [39]Thiru A, Nietlispach D, Mott HR, Okuwaki M, Lyon D, Nielsen PR, Hirshberg M, Verreault A, Murzina NV, Laue ED: Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin. EMBO J 2004, 23:489-499.
- [40]Singh PB: HP1 proteins: what is the essential interaction? Genetika 2010, 46:1424-1429.
- [41]Rountree MR, Selker EU: DNA methylation and the formation of heterochromatin in Neurospora crassa. Heredity 2010, 105:38-44.
- [42]Groner AC, Meylan S, Ciuffi A, Zangger N, Ambrosini G, Dénervaud N, Bucher P, Trono D: KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet 2010, 6:e1000869.
- [43]Sadaie M, Kawaguchi R, Ohtani Y, Arisaka F, Tanaka K, Shirahige K, Nakayama J: Balance between distinct HP1 family proteins controls heterochromatin assembly in fission yeast. Mol Cell Biol 2008, 28:6973-6988.
- [44]Kourmouli N, Sun YM, van der Sar S, Singh PB, Brown JP: Epigenetic regulation of mammalian pericentric heterochromatin in vivo by HP1. Biochem Biophys Res Commun 2005, 337:901-907.
- [45]Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O'Carroll D, Firestein R, Cleary M, Jenuwein T, Herrera RE, Kouzarides T: Rb targets histone H3 methylation and HP1 to promoters. Nature 2001, 412:561-565.
- [46]Kwon SH, Florens L, Swanson SK, Washburn MP, Abmayr SM, Workman JL: Heterochromatin protein 1 (HP1) connects the FACT histone chaperone complex to the phosphorylated CTD of RNA polymerase II. Genes Dev 2010, 24:2133-2145.
- [47]Klattenhoff C, Xi H, Li C, Lee S, Xu J, Khurana JS, Zhang F, Schultz N, Koppetsch BS, Nowosielska A, Seitz H, Zamore PD, Weng Z, Theurkauf WE: The Drosophila HP1 homologue Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell 2009, 138:1137-1149.
- [48]Freitag M, Hickey PC, Khlafallah TK, Read ND, Selker EU: HP1 is essential for DNA methylation in Neurospora. Mol Cell 2004, 13:427-434.
- [49]Tamaru H, Selker EU: A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 2001, 414:277-283.
- [50]Johnson LM, Cao X, Jacobsen SE: Interplay between two epigenetic marks: DNA methylation and histone H3 lysine 9 methylation. Curr Biol 2002, 12:1360-1367.
- [51]Jackson JP, Lindroth AM, Cao X, Jacobsen SE: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 2002, 416:556-560.
- [52]du Chéné I, Basyuk E, Lin YL, Triboulet R, Knezevich A, Chable-Bessia C, Mettling C, Baillat V, Reynes J, Corbeau P, Bertrand E, Marcello A, Emiliani S, Kiernan R, Benkirane M: Suv39H1 and HP1γ are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO J 2007, 26:424-435.
- [53]Brown JP, Bullwinkel J, Baron-Lühr B, Billur M, Schneider P, Winking H, Singh PB: HP1γ function is required for male germ cell survival and spermatogenesis. Epigenetics Chromatin 2010, 3:9. BioMed Central Full Text
- [54]Vakoc CR, Mandat SA, Olenchock BA, Blobel GA: Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol Cell 2005, 19:381-391.
- [55]Mateescu B, Bourachot B, Rachez C, Ogryzko V, Muchardt C: Regulation of an inducible promoter by an HP1β-HP1γ switch. EMBO Rep 2008, 9:267-272.
- [56]Wolf D, Cammas F, Losson R, Goff SP: Primer binding site-dependent restriction of murine leukemia virus requires HP1 binding by TRIM28. J Virol 2008, 82:4675-4679.
- [57]Sripathy SP, Stevens J, Schultz DC: The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol Cell Biol 2006, 26:8623-8638.
- [58]Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ: SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 2002, 16:919-932.
- [59]Stewart MD, Li J, Wong J: Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol 2005, 25:2525-2538.
- [60]Nielsen AL, Ortiz JA, You J, Oulad-Abdelghani M, Khechumian R, Gansmuller A, Chambon P, Losson R: Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBO J 1999, 18:6385-6395.
- [61]Ryan RF, Schultz DC, Ayyanathan K, Singh PB, Friedman JR, Fredericks WJ, Rauscher FJ: KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Krüppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol Cell Biol 1999, 19:4366-4378.
- [62]Danzer JR, Wallrath LL: Mechanisms of HP1-mediated gene silencing in Drosophila. Development 2004, 131:3571-3580.
- [63]Hines KA, Cryderman DE, Flannery KM, Yang H, Vitalini MW, Hazelrigg T, Mizzen CA, Wallrath LL: Domains of heterochromatin protein 1 required for Drosophila melanogaster heterochromatin spreading. Genetics 2009, 182:967-977.
- [64]Partridge JF, Borgstrom B, Allshire RC: Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev 2000, 14:783-791.
- [65]Aagaard L, Laible G, Selenko P, Schmid M, Dorn R, Schotta G, Kuhfittig S, Wolf A, Lebersorger A, Singh PB, Reuter G, Jenuwein T: Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J 1999, 18:1923-1938.
- [66]Li Y, Kirschmann DA, Wallrath LL: Does heterochromatin protein 1 always follow code? Proc Natl Acad Sci USA 2002, 99(Suppl 4):16462-16469.
- [67]Locke SM, Martienssen RA: Slicing and spreading of heterochromatic silencing by RNA interference. Cold Spring Harb Symp Quant Biol 2006, 71:497-503.
- [68]Talbert PB, Henikoff S: Spreading of silent chromatin: inaction at a distance. Nat Rev Genet 2006, 7:793-803.
- [69]Honda S, Lewis ZA, Huarte M, Cho LY, David LL, Shi Y, Selker EU: The DMM complex prevents spreading of DNA methylation from transposons to nearby genes in Neurospora crassa. Genes Dev 2010, 24:443-454.
- [70]Tajul-Arifin K, Teasdale R, Ravasi T, Hume DA, Mattick JS: Identification and analysis of chromodomain-containing proteins encoded in the mouse transcriptome. Genome Res 2003, 13:1416-1429.
- [71]Kokura K, Sun L, Bedford MT, Fang J: Methyl-H3K9-binding protein MPP8 mediates E-cadherin gene silencing and promotes tumour cell motility and invasion. EMBO J 2010, 29:3673-3687.
- [72]Bua DJ, Kuo AJ, Cheung P, Liu CL, Migliori V, Espejo A, Casadio F, Bassi C, Amati B, Bedford MT, Guccione E, Gozani O: Epigenome microarray platform for proteome-wide dissection of chromatin-signaling networks. PLoS One 2009, 4:e6789.
- [73]Liu H, Galka M, Iberg A, Wang Z, Li L, Voss C, Jiang X, Lajoie G, Huang Z, Bedford MT, Li SS: Systematic identification of methyllysine-driven interactions for histone and nonhistone targets. J Proteome Res 2010, 9:5827-5836.
- [74]Fischle W, Franz H, Jacobs SA, Allis CD, Khorasanizadeh S: Specificity of the chromodomain Y chromosome family of chromodomains for lysine-methylated ARK(S/T) motifs. J Biol Chem 2008, 283:19626-19635.
- [75]Kim J, Daniel J, Espejo A, Lake A, Krishna M, Xia L, Zhang Y, Bedford MT: Tudor, MBT and chromo domains gauge the degree of lysine methylation. EMBO Rep 2006, 7:397-403.
- [76]Mulligan P, Westbrook TF, Ottinger M, Pavlova N, Chang B, Macia E, Shi YJ, Barretina J, Liu J, Howley PM, Elledge SJ, Shi Y: CDYL bridges REST and histone methyltransferases for gene repression and suppression of cellular transformation. Mol Cell 2008, 32:718-726.
- [77]Bernstein E, Duncan EM, Masui O, Gil J, Heard E, Allis CD: Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol Cell Biol 2006, 26:2560-2569.
- [78]Quinn AM, Bedford MT, Espejo A, Spannhoff A, Austin CP, Oppermann U, Simeonov A: A homogeneous method for investigation of methylation-dependent protein-protein interactions in epigenetics. Nucleic Acids Res 2009, 38:e11.
- [79]Rottach A, Frauer C, Pichler G, Bonapace IM, Spada F, Leonhardt H: The multi-domain protein Np95 connects DNA methylation and histone modification. Nucleic Acids Res 2010, 38:1796-1804.
- [80]Bernard D, Martinez-Leal JF, Rizzo S, Martinez D, Hudson D, Visakorpi T, Peters G, Carnero A, Beach D, Gil J: CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the Ink4a/Arf locus. Oncogene 2005, 24:5543-5551.
- [81]Aucott R, Bullwinkel J, Yu Y, Shi W, Billur M, Brown JP, Menzel U, Kioussis D, Wang G, Reisert I, Weimer J, Pandita RK, Sharma GG, Pandita TK, Fundele R, Singh PB: HP1-β is required for development of the cerebral neocortex and neuromuscular junctions. J Cell Biol 2008, 183:597-606.
- [82]Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T: A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 2004, 18:1251-1262.
- [83]Dong KB, Maksakova IA, Mohn F, Leung D, Appanah R, Lee S, Yang HW, Lam LL, Mager DL, Schübeler D, Tachibana M, Shinkai Y, Lorincz MC: DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO J 2008, 27:2691-2701.
- [84]Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AH: Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 2003, 13:1192-1200.
- [85]Honda S, Selker EU: Direct interaction between DNA methyltransferase DIM-2 and HP1 is required for DNA methylation in Neurospora crassa. Mol Cell Biol 2008, 28:6044-6055.
- [86]Maksakova IA, Zhang Y, Mager DL: Preferential epigenetic suppression of the autonomous MusD over the nonautonomous ETn mouse retrotransposons. Mol Cell Biol 2009, 29:2456-2468.
- [87]Feng YQ, Seibler J, Alami R, Eisen A, Westerman KA, Leboulch P, Fiering S, Bouhassira EE: Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol 1999, 292:779-785.
- [88]Schübeler D, Lorincz MC, Groudine M: Targeting silence: the use of site-specific recombination to introduce in vitro methylated DNA into the genome. Sci STKE 2001, 2001(83):l1.
- [89]Lorincz MC, Schübeler D, Groudine M: Methylation-mediated proviral silencing is associated with MeCP2 recruitment and localized histone H3 deacetylation. Mol Cell Biol 2001, 21:7913-7922.
- [90]Teich NM, Weiss RA, Martin GR, Lowy DR: Virus infection of murine teratocarcinoma stem cell lines. Cell 1977, 12:973-982.
- [91]Pannell D, Osborne CS, Yao S, Sukonnik T, Pasceri P, Karaiskakis A, Okano M, Li E, Lipshitz HD, Ellis J: Retrovirus vector silencing is de novo methylase independent and marked by a repressive histone code. EMBO J 2000, 19:5884-5894.
- [92]Niwa O, Yokota Y, Ishida H, Sugahara T: Independent mechanisms involved in suppression of the Moloney leukemia virus genome during differentiation of murine teratocarcinoma cells. Cell 1983, 32:1105-1113.
- [93]Cheng L, Du C, Murray D, Tong X, Zhang YA, Chen BP, Hawley RG: A GFP reporter system to assess gene transfer and expression in human hematopoietic progenitor cells. Gene Ther 1997, 4:1013-1022.
- [94]Musselman CA, Mansfield RE, Garske AL, Davrazou F, Kwan AH, Oliver SS, O'Leary H, Denu JM, Mackay JP, Kutateladze TG: Binding of the CHD4 PHD2 finger to histone H3 is modulated by covalent modifications. Biochem J 2009, 423:179-187.
- [95]Mansfield RE, Musselman CA, Kwan AH, Oliver SS, Garske AL, Davrazou F, Denu JM, Kutateladze TG, Mackay JP: The plant homeodomain (PHD) fingers of CHD4 are histone H3-binding modules with preference for unmodified H3K4 and methylated H3K9. J Biol Chem 2011, 286:11779-11791.
- [96]Iwase S, Lan F, Bayliss P, de la Torre-Ubieta L, Huarte M, Qi HH, Whetstine JR, Bonni A, Roberts TM, Shi Y: The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 2007, 128:1077-1088.
- [97]Li F, Huarte M, Zaratiegui M, Vaughn MW, Shi Y, Martienssen R, Cande WZ: Lid2 is required for coordinating H3K4 and H3K9 methylation of heterochromatin and euchromatin. Cell 2008, 135:272-283.
- [98]Karagianni P, Amazit L, Qin J, Wong J: ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation. Mol Cell Biol 2008, 28:705-717.
- [99]Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T: Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 2010, 143:470-484.
- [100]Nady N, Lemak A, Walker JR, Avvakumov GV, Kareta MS, Achour M, Xue S, Duan S, Allali-Hassani A, Zuo X, Wang YX, Bronner C, Chédin F, Arrowsmith CH, Dhe-Paganon S: Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein. J Biol Chem 2011, 286:24300-24311.
- [101]Papait R, Pistore C, Negri D, Pecoraro D, Cantarini L, Bonapace IM: Np95 is implicated in pericentromeric heterochromatin replication and in major satellite silencing. Mol Biol Cell 2007, 18:1098-1106.
- [102]Seum C, Delattre M, Spierer A, Spierer P: Ectopic HP1 promotes chromosome loops and variegated silencing in Drosophila. EMBO J 2001, 20:812-818.
- [103]Seum C, Spierer A, Delattre M, Pauli D, Spierer P: A GAL4-HP1 fusion protein targeted near heterochromatin promotes gene silencing. Chromosoma 2000, 109:453-459.
- [104]Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D: Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter. Cell 2000, 103:667-678.
- [105]Kasten M, Szerlong H, Erdjument-Bromage H, Tempst P, Werner M, Cairns BR: Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J 2004, 23:1348-1359.
- [106]Vicent GP, Zaurin R, Nacht AS, Li A, Font-Mateu J, Le Dily F, Vermeulen M, Mann M, Beato M: Two chromatin remodeling activities cooperate during activation of hormone responsive promoters. PLoS Genet 2009, 5:e1000567.
- [107]Hassan AH, Neely KE, Workman JL: Histone acetyltransferase complexes stabilize SWI/SNF binding to promoter nucleosomes. Cell 2001, 104:817-827.
- [108]Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K: Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 2009, 138:1019-1031.
- [109]Jin Q, Yu LR, Wang L, Zhang Z, Kasper LH, Lee JE, Wang C, Brindle PK, Dent SY, Ge K: Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 2011, 30:249-262.
- [110]Nagy Z, Riss A, Fujiyama S, Krebs A, Orpinell M, Jansen P, Cohen A, Stunnenberg HG, Kato S, Tora L: The metazoan ATAC and SAGA coactivator HAT complexes regulate different sets of inducible target genes. Cell Mol Life Sci 2010, 67:611-628.
- [111]Nagy Z, Tora L: Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 2007, 26:5341-5357.
- [112]Huang J, Fan T, Yan Q, Zhu H, Fox S, Issaq HJ, Best L, Gangi L, Munroe D, Muegge K: Lsh, an epigenetic guardian of repetitive elements. Nucleic Acids Res 2004, 32:5019-5028.
- [113]Vicent GP, Ballaré C, Nacht AS, Clausell J, Subtil-Rodríguez A, Quiles I, Jordan A, Beato M: Induction of progesterone target genes requires activation of Erk and Msk kinases and phosphorylation of histone H3. Mol Cell 2006, 24:367-381.
- [114]Hebbar PB, Archer TK: Nuclear factor 1 is required for both hormone-dependent chromatin remodeling and transcriptional activation of the mouse mammary tumor virus promoter. Mol Cell Biol 2003, 23:887-898.
- [115]Vicent GP, Zaurin R, Nacht AS, Font-Mateu J, Le Dily F, Beato M: Nuclear factor 1 synergizes with progesterone receptor on the mouse mammary tumor virus promoter wrapped around a histone H3/H4 tetramer by facilitating access to the central hormone-responsive elements. J Biol Chem 2010, 285:2622-2631.
- [116]Baust C, Gagnier L, Baillie GJ, Harris MJ, Juriloff DM, Mager DL: Structure and expression of mobile ETnII retroelements and their coding-competent MusD relatives in the mouse. J Virol 2003, 77:11448-11458.
- [117]Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T: Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 2000, 406:593-599.
- [118]Gregory GD, Vakoc CR, Rozovskaia T, Zheng X, Patel S, Nakamura T, Canaani E, Blobel GA: Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol Cellular Biol 2007, 27:8466-8479.
- [119]Wang H, Cao R, Xia L, Erdjument-Bromage H, Borchers C, Tempst P, Zhang Y: Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell 2001, 8:1207-1217.
- [120]Yan Q, Huang J, Fan T, Zhu H, Muegge K: Lsh, a modulator of CpG methylation, is crucial for normal histone methylation. EMBO J 2003, 22:5154-5162.
- [121]Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X, Burlingame AL, Roeder RG, Brivanlou AH, Allis CD: WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 2005, 121:859-872.
- [122]Balakrishnan L, Milavetz B: Decoding the histone H4 lysine 20 methylation mark. Crit Rev Biochem Mol Biol 2010, 45:440-452.
- [123]Gonzalo S, García-Cao M, Fraga MF, Schotta G, Peters AH, Cotter SE, Eguía R, Dean DC, Esteller M, Jenuwein T, Blasco MA: Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol 2005, 7:420-428.
- [124]Schotta G, Sengupta R, Kubicek S, Malin S, Kauer M, Callén E, Celeste A, Pagani M, Opravil S, De La Rosa-Velazquez IA, Espejo A, Bedford MT, Nussenzweig A, Busslinger M, Jenuwein T: A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev 2008, 22:2048-2061.
- [125]Ayoub N, Jeyasekharan AD, Venkitaraman AR: Mobilization and recruitment of HP1β: a bimodal response to DNA breakage. Cell Cycle 2009, 8:2945-2950.
- [126]Luijsterburg MS, Dinant C, Lans H, Stap J, Wiernasz E, Lagerwerf S, Warmerdam DO, Lindh M, Brink MC, Dobrucki JW, Aten JA, Fousteri MI, Jansen G, Dantuma NP, Vermeulen W, Mullenders LH, Houtsmuller AB, Verschure PJ, van Driel R: Heterochromatin protein 1 is recruited to various types of DNA damage. J Cell Biol 2009, 185:577-586.
- [127]Feng YQ, Lorincz MC, Fiering S, Greally JM, Bouhassira EE: Position effects are influenced by the orientation of a transgene with respect to flanking chromatin. Mol Cell Biol 2001, 21:298-309.
- [128]Juriloff DM, Harris MJ, Dewell SL, Brown CJ, Mager DL, Gagnier L, Mah DG: Investigations of the genomic region that contains the clf1 mutation, a causal gene in multifactorial cleft lip and palate in mice. Birth Defects Res A Clin Mol Teratol 2005, 73:103-113.
- [129]Plamondon JA, Harris MJ, Mager DL, Gagnier L, Juriloff DM: The clf2 gene has an epigenetic role in the multifactorial etiology of cleft lip and palate in the A/WySn mouse strain. Birth Defects Res A Clin Mol Teratol, in press.
- [130]Bouhassira EE, Westerman K, Leboulch P: Transcriptional behavior of LCR enhancer elements integrated at the same chromosomal locus by recombinase-mediated cassette exchange. Blood 1997, 90:3332-3344.
- [131]Kumaki Y, Oda M, Okano M: QUMA: quantification tool for methylation analysis. Nucleic Acids Res 2008, (36 Web Server):W170-W175.
- [132]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 2005, 110:462-467.
- [133]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25:1754-1760.