期刊论文详细信息
Clinical Epigenetics
MicroRNA-375 plays a dual role in prostate carcinogenesis
Carmen Jerónimo3  Rui Henrique3  Bruno M Costa1  Céline S Gonçalves1  Jorge Oliveira2  Jorge Torres-Ferreira4  Filipa Quintela Vieira5  João Ramalho-Carvalho4  Pedro Costa-Pinheiro4 
[1] ICVS/3B’s - PT Government Associate Laboratory, Universidade do Minho, Campus de Gualtar, Guimarães, 4710-057, Braga, Portugal;Department of Urology, Portuguese Oncology Institute, Rua Dr. António Bernardino de Almeida, Porto 4200-072, Portugal;Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal;Cancer Biology and Epigenetics Group - Research Center (Lab3), Portuguese Oncology Institute - Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, Porto 4200-072, Portugal;School of Allied Health Sciences (ESTSP), Polytechnic of Porto, Rua Valente Perfeito 322, Vila Nova de Gaia 4400-330, Portugal
关键词: CCND2;    miR-375;    Epigenetics;    MicroRNAs;    Prostate cancer;   
Others  :  1210212
DOI  :  10.1186/s13148-015-0076-2
 received in 2014-12-01, accepted in 2015-03-19,  发布年份 2015
PDF
【 摘 要 】

Background

Prostate cancer (PCa), a highly incident and heterogeneous malignancy, mostly affects men from developed countries. Increased knowledge of the biological mechanisms underlying PCa onset and progression are critical for improved clinical management. MicroRNAs (miRNAs) deregulation is common in human cancers, and understanding how it impacts in PCa is of major importance. MiRNAs are mostly downregulated in cancer, although some are overexpressed, playing a critical role in tumor initiation and progression. We aimed to identify miRNAs overexpressed in PCa and subsequently determine its impact in tumorigenesis.

Results

MicroRNA expression profiling in primary PCa and morphological normal prostate (MNPT) tissues identified 17 miRNAs significantly overexpressed in PCa. Expression of three miRNAs, not previously associated with PCa, was subsequently assessed in large independent sets of primary tumors, in which miR-182 and miR-375 were validated, but not miR-32. Significantly higher expression levels of miR-375 were depicted in patients with higher Gleason score and more advanced pathological stage, as well as with regional lymph nodes metastases. Forced expression of miR-375 in PC-3 cells, which display the lowest miR-375 levels among PCa cell lines, increased apoptosis and reduced invasion ability and cell viability. Intriguingly, in 22Rv1 cells, which displayed the highest miR-375 expression, knockdown experiments also attenuated the malignant phenotype. Gene ontology analysis implicated miR-375 in several key pathways deregulated in PCa, including cell cycle and cell differentiation. Moreover, CCND2 was identified as putative miR-375 target in PCa, confirmed by luciferase assay.

Conclusions

A dual role for miR-375 in prostate cancer progression is suggested, highlighting the importance of cellular context on microRNA targeting.

【 授权许可】

   
2015 Costa-Pinheiro et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150603035836209.pdf 1769KB PDF download
Figure 10. 14KB Image download
Figure 9. 64KB Image download
20150407102111475.pdf 175KB PDF download
Figure 7. 21KB Image download
Figure 6. 22KB Image download
Figure 5. 28KB Image download
Figure 4. 10KB Image download
Figure 3. 24KB Image download
Figure 2. 29KB Image download
Figure 1. 28KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al.: Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 2013, 49(6):1374-403.
  • [2]Siegel R, Ma J, Zou Z, Jemal A: Cancer statistics, 2014. CA Cancer J Clin 2014, 64(1):9-29.
  • [3]Hricak H, Scardino PT: Prostate cancer. Contemporary issues in cancer imaging. Cambridge, UK. Cambridge University Press, New York; 2009.
  • [4]Jeronimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JW, Clark SJ, et al.: Epigenetics in prostate cancer: biologic and clinical relevance. Eur Urol 2011, 60(4):753-66.
  • [5]Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T: MicroRNA expression profiling in prostate cancer. Cancer Res 2007, 67(13):6130-5.
  • [6]Croce CM: Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009, 10(10):704-14.
  • [7]Iorio MV, Croce CM: MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 2009, 27(34):5848-56.
  • [8]Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73. doi:10.1093/nar/gkt1181.
  • [9]van Rooij E, Olson EN: MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov 2012, 11(11):860-72.
  • [10]Iorio MV, Croce CM: MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012, 4(3):143-59.
  • [11]Davalos V, Esteller M: MicroRNAs and cancer epigenetics: a macrorevolution. Curr Opin Oncol 2010, 22(1):35-45.
  • [12]Catto JW, Alcaraz A, Bjartell AS, De Vere WR, Evans CP, Fussel S, et al.: MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol 2011, 59(5):671-81.
  • [13]Coppola V, De Maria R, Bonci D: MicroRNAs and prostate cancer. Endocr Relat Cancer 2010, 17(1):F1-F17.
  • [14]Shen MM, Abate-Shen C: Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 2010, 24(18):1967-2000.
  • [15]Lewis H, Lance R, Troyer D, Beydoun H, Hadley M, Orians J, et al. miR-888 is an expressed prostatic secretions-derived microRNA that promotes prostate cell growth and migration. Cell Cycle. 2014;13(2):227–39. doi:10.4161/cc.26984.
  • [16]Sun R, Fu X, Li Y, Xie Y, Mao Y: Global gene expression analysis reveals reduced abundance of putative microRNA targets in human prostate tumours. BMC Genomics. 2009, 10:93.
  • [17]Lockhart DJ, Winzeler EA: Genomics, gene expression and DNA arrays. Nature 2000, 405(6788):827-36.
  • [18]Tsuchiyama K, Ito H, Taga M, Naganuma S, Oshinoya Y, Nagano K, et al.: Expression of microRNAs associated with Gleason grading system in prostate cancer: miR-182-5p is a useful marker for high grade prostate cancer. Prostate 2013, 73(8):827-34.
  • [19]Cheng HH, Mitchell PS, Kroh EM, Dowell AE, Chery L, Siddiqui J, et al.: Circulating microRNA profiling identifies a subset of metastatic prostate cancer patients with evidence of cancer-associated hypoxia. PLoS One 2013., 8(7)
  • [20]Nguyen HC, Xie W, Yang M, Hsieh CL, Drouin S, Lee GS, et al.: Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate 2013, 73(4):346-54.
  • [21]Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, et al.: Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol 2015, 67(1):33-41.
  • [22]Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, et al.: MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 2007, 26(30):4442-52.
  • [23]Ladeiro Y, Couchy G, Balabaud C, Bioulac-Sage P, Pelletier L, Rebouissou S, et al.: MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology 2008, 47(6):1955-63.
  • [24]Avissar M, Christensen BC, Kelsey KT, Marsit CJ: MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. Clin Cancer Res 2009, 15(8):2850-5.
  • [25]Tsukamoto Y, Nakada C, Noguchi T, Tanigawa M, Nguyen LT, Uchida T, et al.: MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res 2010, 70(6):2339-49.
  • [26]Ding L, Xu Y, Zhang W, Deng Y, Si M, Du Y, et al.: MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res 2010, 20(7):784-93.
  • [27]Szczyrba J, Nolte E, Wach S, Kremmer E, Stohr R, Hartmann A, et al.: Downregulation of Sec23A protein by miRNA-375 in prostate carcinoma. Mol Cancer Res 2011, 9(6):791-800.
  • [28]Selth LA, Townley S, Gillis JL, Ochnik AM, Murti K, Macfarlane RJ, et al.: Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. Int J Cancer 2012, 131(3):652-61.
  • [29]Wach S, Nolte E, Szczyrba J, Stohr R, Hartmann A, Orntoft T, et al.: MicroRNA profiles of prostate carcinoma detected by multiplatform microRNA screening. Int J Cancer 2012, 130(3):611-21.
  • [30]Nam JW, Rissland OS, Koppstein D, Abreu-Goodger C, Jan CH, Agarwal V, et al.: Global analyses of the effect of different cellular contexts on microRNA targeting. Mol Cell 2014, 53(6):1031-43.
  • [31]Costa VL, Henrique R, Jeronimo C: Epigenetic markers for molecular detection of prostate cancer. Dis Markers 2007, 23(1–2):31-41.
  • [32]Kobayashi T, Nakamura E, Shimizu Y, Terada N, Maeno A, Kobori G, et al.: Restoration of cyclin D2 has an inhibitory potential on the proliferation of LNCaP cells. Biochem Biophys Res Commun 2009, 387(1):196-201.
  • [33]Bettendorf O, Schmidt H, Staebler A, Grobholz R, Heinecke A, Boecker W, et al.: Chromosomal imbalances, loss of heterozygosity, and immunohistochemical expression of TP53, RB1, and PTEN in intraductal cancer, intraepithelial neoplasia, and invasive adenocarcinoma of the prostate. Genes, Chromosomes Cancer. 2008, 47(7):565-72.
  • [34]Chu M, Chang Y, Li P, Guo Y, Zhang K, Gao W: Androgen receptor is negatively correlated with the methylation-mediated transcriptional repression of miR-375 in human prostate cancer cells. Oncol Rep 2014, 31(1):34-40.
  • [35]Di Leva G, Piovan C, Gasparini P, Ngankeu A, Taccioli C, Briskin D, et al.: Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status. PLoS Genet 2013., 9(3)
  • [36]DeVita VT, Lawrence TS, Rosenberg SA: Cancer: principles and practice of oncology. 5th edition. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia; 2008.
  • [37]Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative C (T) method. Nat Protoc 2008, 3(6):1101-8.
  • [38]Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S: AmiGO: online access to ontology and annotation data. Bioinformatics 2009, 25(2):288-9.
  • [39]Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, et al.: GO: TermFinder - open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 2004, 20(18):3710-5.
  • [40]Gonçalves C. The Cancer Genome Atlas (TCGA). http://cancergenome.nih.gov/. Accessed 2014.
  文献评价指标  
  下载次数:42次 浏览次数:14次