期刊论文详细信息
Journal of Clinical Bioinformatics
Metabonomics-based omics study and atherosclerosis
Xiang-dong Wang1  Bi-jun Zhu1  Duo-jiao Wu1 
[1] Biomedical Research Center, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, China
关键词: inflammation;    metabolic disturbances;    atherosclerosis;    metabolomics;    Metabonomics;   
Others  :  806352
DOI  :  10.1186/2043-9113-1-30
 received in 2010-10-03, accepted in 2011-10-31,  发布年份 2011
PDF
【 摘 要 】

Atherosclerosis results from dyslipidemia and systemic inflammation, associated with the strong metabolism and interaction between diet and disease. Strategies based on the global profiling of metabolism would be important to define the mechanisms involved in pathological alterations. Metabonomics is the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modification. Metabonomics has been used in combination with proteomics and transcriptomics as the part of a systems biology description to understand the genome interaction with the development of atherosclerosis. The present review describes the application of metabonomics to explore the potential role of metabolic disturbances and inflammation in the initiation and development of atherosclerosis. Metabonomics-based omics study offers a new potential for biomarker discovery by disentangling the impacts of diet, environment and lifestyle.

【 授权许可】

   
2011 Wu et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708092732598.pdf 328KB PDF download
20140705072853455.pdf 336KB PDF download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Kitano H: Systems biology: a brief overview. Science 2002, 295:1662-1664.
  • [2]Ambrose JA, Srikanth S: Vulnerable plaques and patients: improving prediction of future coronary events. American Journal of Medicine 2010, 123:10-16.
  • [3]Naghavi M, Libby P, Falk E: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 2003, 108:1772-1778.
  • [4]Nicholson JK: Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol 2006, 2:1-6.
  • [5]Lewis GD, Asnani A, Gerszten RE: Application of metabolomics to cardiovascular biomarker and pathway discovery. Journal of the American College of Cardiology 2008, 52:117-123.
  • [6]Mimmi MC, Picotti P, Corazza A, Betto E: High-performance metabolic marker assessment in breast cancer tissue by mass spectrometry. Clin Chem Lab Med 2011, 49:317-324.
  • [7]Patterson AD, Bonzo JA, Li F, Krausz KW, Eichler GS, Aslam S: Metabolomics Reveals Attenuation of the SLC6A20 Kidney Transporter in Nonhuman Primate and Mouse Models of Type 2 Diabetes Mellitus. J Biol Chem 2011, 286:19511-19522.
  • [8]Cavill R, Keun HC, Holmes E, Lindon JC, Nicholson JK, Ebbels TM: Genetic algorithms for simultaneous variable and sample selection in metabonomics. Bioinformatics 2008, 25:112-118.
  • [9]Yang J, Song SL, Castro-Perez J, Plumb RS, Xu GW: Metabonomics and its Applications. Sheng Wu Gong Cheng Xue Bao 2005, 21:1-5.
  • [10]Nicholson JK, Lindon JC: Systems biology metabonomics. Nature 2008, 455:1054-1056.
  • [11]Chen CL, Liu IH, Fliesler SJ, Han X, Huang SS, Huang JS: Cholesterol suppresses cellular TGF-beta responsiveness: implications in atherogenesis. Journal of Cell Science 2007, 120:3509-3521.
  • [12]Fessler MB, Rudel LL, Brown JM: Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome. Current Opinion in Lipidology 2009, 20:379-385.
  • [13]Lindon JohnC, Nicholson JeremyK, Holmes Elaine: The handbook of metabonomics and metabolomics 2006. Elsevier Science;
  • [14]Dieterle F, Riefke B, Schlotterbeck G, Ross A, Senn H, Amberg A: NMR and MS methods for metabonomics. Methods Mol Biol 2011, 691:385-415.
  • [15]Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G: XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 2006, 78:779-787.
  • [16]Katajamaa M, Miettinen J, Oresic M: MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 2006, 22:634-636.
  • [17]Lommen A: MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data processing. Anal Chem 2009, 81:3079-3086.
  • [18]Baran R, Kochi H, Saito N, Suematsu M, Soga T, Nishioka T, Robert M, Tomita M: MathDAMP: a package for differential analysis of metabolite profiles. BMC Bioinformatics 2006, 7:530. BioMed Central Full Text
  • [19]Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci USA 2003, 100:9440-9445.
  • [20]Trygg J, Holmes E, Lundstedt T: Chemometrics in metabonomics. J Proteome Res 2007, 6:469-479.
  • [21]Frolkis A, Knox C, Lim E: SMPDB: The Small Molecule Pathway Database. Nucleic Acids Research 2010, 38:D480-487.
  • [22]Wishart DS, Knox C, Guo AC: HMDB: a knowledgebase for the human metabolome. Nucleic Acids Research 2009, 37:D603-610.
  • [23]Wishart DS: Human Metabolome Database: completing the 'human parts list'. Pharmacogenomics 2007, 8:683-686.
  • [24]Watson AD: Lipidomics: a global approach to lipid analysis in biological systems. Journal of Lipid Research 2006, 47:2101-2111.
  • [25]Clish CB, Davidov E, Oresic M: Integrative biological analysis of the APOE*3-leiden transgenic mouse. OMICS 2004, 8:3-13.
  • [26]Martin JC, Canlet C, Delplanque B: 1H NMR metabonomics can differentiate the early atherogenic effect of dairy products in hyperlipidemic hamsters. Atherosclerosis 2009, 206:127-133.
  • [27]Zhang F, Jia Z, Gao P: Metabonomics study of atherosclerosis rats by ultra fast liquid chromatography coupled with ion trap-time of flight mass spectrometry. Talanta 2009, 79:836-844.
  • [28]Mayr M, Chung YL, Mayr U: Proteomic and metabolomic analyses of atherosclerotic vessels from apolipoprotein E-deficient mice reveal alterations in inflammation, oxidative stress, and energy metabolism. Arteriosclerosis, Thrombosis, and Vascular Biology 2005, 25:2135-2142.
  • [29]Bryson JM, Cooney GJ, Wensley VR, Phuyal JL, Caterson ID: The effects of the inhibition of fatty acid oxidation on pyruvate dehydrogenase complex activity in tissues of lean and obese mice. International journal of obesity and related metabolic disorders 1996, 20:738-744.
  • [30]Lynch RM, Paul RJ: Compartmentation of glycolytic and glycogenolytic metabolism in vascular smooth muscle. Science 1983, 222:1344-1346.
  • [31]Teul J, Rupérez FJ, Garcia A: Improving metabolite knowledge in stable atherosclerosis patients by association and correlation of GC-MS and 1H NMR fingerprints. Journal of Proteome Research 2009, 8:5580-55896.
  • [32]Chen X, Liu L, Palacios G, Gao J, Zhang N, Li G, Lu J, Song T, Zhang Y, Lv H: Plasma metabolomics reveals biomarkers of the atherosclerosis. Sep Sci 2010, 33:2776-2783.
  • [33]Febbraio MA, Hiscock N, Sacchetti M, Fischer CP, Pedersen BK: Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes 2004, 53:1643-1648.
  • [34]Kleemann R, Verschuren L, van Erk MJ: Atherosclerosis and liver inflammation induced by increased dietary cholesterol intake: a combined transcriptomics and metabolomics analysis. Genome Biology 2007, 8:R200. BioMed Central Full Text
  • [35]Li N, Liu JY, Timofeyev V: Beneficial effects of soluble epoxide hydrolase inhibitors in myocardial infarction model: Insight gained using metabolomic approaches. Journal of Molecular and Cellular Cardiology 2009, 47:835-845.
  • [36]Liu JY, Yang J, Inceoglu B: Inhibition of soluble epoxide hydrolase enhances the anti-inflammatory effects of aspirin and 5-lipoxygenase activation protein inhibitor in a murine model. Biochemical Pharmacology 2010, 79:880-887.
  • [37]Buschow SI, Lasonder E, van Deutekom HW: Dominant processes during human dendritic cell maturation revealed by integration of proteome and transcriptome at the pathway level. Journal of Proteome Research 2010, 9:1727-1737.
  • [38]Nibbe RK, Koyutürk M, Chance MR: An integrative-omics approach to identify functional sub-networks in human colorectal cancer. PLoS Computational Biology 2010, 6:e1000639.
  文献评价指标  
  下载次数:4次 浏览次数:63次