期刊论文详细信息
Herpesviridae
Herpes simplex virus and varicella zoster virus, the house guests who never leave
Robert L Hendricks2  Jean-Marc G Guedon1  Anthony J St Leger2  Paul R Kinchington1 
[1]Department of Molecular Genetics & Biochemistry, University of Pittsburgh, Pittsburgh, PA, USA
[2]Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
关键词: Pathogenesis;    Immunity;    VZV;    Varicella Zoster Virus;    HSV;    Herpes Simplex Virus;    Alphaherpesvirus;   
Others  :  801065
DOI  :  10.1186/2042-4280-3-5
 received in 2011-12-16, accepted in 2012-05-12,  发布年份 2012
PDF
【 摘 要 】

Human alphaherpesviruses including herpes simplex viruses (HSV-1, HSV-2) and varicella zoster virus (VZV) establish persistent latent infection in sensory neurons for the life of the host. All three viruses have the potential to reactivate causing recurrent disease. Regardless of the homology between the different virus strains, the three viruses are characterized by varying pathologies. This review will highlight the differences in infection pattern, immune response, and pathogenesis associated with HSV-1 and VZV.

【 授权许可】

   
2012 Kinchington et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708002931536.pdf 269KB PDF download
【 参考文献 】
  • [1]Mitchell BM, Bloom DC, Cohrs RJ, Gilden DH, Kennedy PG: Herpes simplex virus-1 and varicella-zoster virus latency in ganglia. J Neurovirol 2003, 9:194-204.
  • [2]Rouse BT, Kaistha SD: A tale of 2 alpha-herpesviruses: lessons for vaccinologists. Clin Infect Dis 2006, 42:810-817.
  • [3]Kaufer BB, Smejkal B, Osterrieder N: The varicella-zoster virus ORFS/L (ORF0) gene is required for efficient viral replication and contains an element involved in DNA cleavage. J Virol 2010, 84:11661-11669.
  • [4]Umbach JL, Nagel MA, Cohrs RJ, Gilden DH, Cullen BR: Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol 2009, 83:10677-10683.
  • [5]Cohen JI: The varicella-zoster virus genome. Curr Top Microbiol Immunol 2010, 342:1-14.
  • [6]DeLuca NA, McCarthy AM, Schaffer PA: Isolation and characterization of deletion mutants of herpes simplex virus type 1 in the gene encoding immediate-early regulatory protein ICP4. J Virol 1985, 56:558-570.
  • [7]Sato B, Ito H, Hinchliffe S, Sommer MH, Zerboni L, Arvin AM: Mutational analysis of open reading frames 62 and 71, encoding the varicella-zoster virus immediate-early transactivating protein, IE62, and effects on replication in vitro and in skin xenografts in the SCID-hu mouse in vivo. J Virol 2003, 77:5607-5620.
  • [8]Felser JM, Kinchington PR, Inchauspe G, Straus SE, Ostrove JM: Cell lines containing varicella-zoster virus open reading frame 62 and expressing the “IE” 175 protein complement ICP4 mutants of herpes simplex virus type 1. J Virol 1988, 62:2076-2082.
  • [9]Tyler JK, Orr A, Everett RD: Replacement of the herpes simplex virus type 1 Vmw175 DNA binding domain with its varicella-zoster virus counterpart results in a protein with novel regulatory properties that can support virus growth. J Gen Virol 1997, 78(Pt 1):179-188.
  • [10]Kinchington PR, Fite K, Seman A, Turse SE: Virion association of IE62, the varicella-zoster virus (VZV) major transcriptional regulatory protein, requires expression of the VZV open reading frame 66 protein kinase. J Virol 2001, 75:9106-9113.
  • [11]Sen N, Sommer M, Che X, White K, Ruyechan WT, Arvin AM: Varicella-zoster virus immediate-early protein 62 blocks interferon regulatory factor 3 (IRF3) phosphorylation at key serine residues: a novel mechanism of IRF3 inhibition among herpesviruses. J Virol 2010, 84:9240-9253.
  • [12]Perera LP, Kaushal S, Kinchington PR, Mosca JD, Hayward GS, Straus SE: Varicella-zoster virus open reading frame 4 encodes a transcriptional activator that is functionally distinct from that of herpes simplex virus homology ICP27. J Virol 1994, 68:2468-2477.
  • [13]Kyratsous CA, Walters MS, Panagiotidis CA, Silverstein SJ: Complementation of a herpes simplex virus ICP0 null mutant by varicella-zoster virus ORF61p. J Virol 2009, 83:10637-10643.
  • [14]Hill A, Jugovic P, York I, Russ G, Bennink J, Yewdell J, Ploegh H, Johnson D: Herpes simplex virus turns off the TAP to evade host immunity. Nature 1995, 375(6530):411-415.
  • [15]Spear PG: Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol 2004, 6:401-410.
  • [16]Berarducci B, Rajamani J, Zerboni L, Che X, Sommer M, Arvin AM: Functions of the unique N-terminal region of glycoprotein E in the pathogenesis of varicella-zoster virus infection. Proc Natl Acad Sci U S A 2010, 107:282-287.
  • [17]Li Q, Krogmann T, Ali MA, Tang WJ, Cohen JI: The amino terminus of varicella-zoster virus (VZV) glycoprotein E is required for binding to insulin-degrading enzyme, a VZV receptor. J Virol 2007, 81:8525-8532.
  • [18]Li Q, Ali MA, Cohen JI: Insulin degrading enzyme is a cellular receptor mediating varicella-zoster virus infection and cell-to-cell spread. Cell 2006, 127:305-316.
  • [19]Oliver SL, Sommer MH, Reichelt M, Rajamani J, Vlaycheva-Beisheim L, Stamatis S, Cheng J, Jones C, Zehnder J, Arvin AM: Mutagenesis of varicella-zoster virus glycoprotein I (gI) identifies a cysteine residue critical for gE/gI heterodimer formation, gI structure, and virulence in skin cells. J Virol 2011, 85:4095-4110.
  • [20]Arvin AM, Oliver S, Reichelt M, Moffat JF, Sommer M, Zerboni L, Berarducci B: Analysis of the functions of glycoproteins E and I and their promoters during VZV replication in vitro and in skin and T-cell xenografts in the SCID mouse model of VZV pathogenesis. Curr Top Microbiol Immunol 2010, 342:129-146.
  • [21]Cohen JI, Seidel K: Varicella-zoster virus (VZV) open reading frame 10 protein, the homolog of the essential herpes simplex virus protein VP16, is dispensable for VZV replication in vitro. J Virol 1994, 68:7850-7858.
  • [22]Tischer BK, Kaufer BB, Sommer M, Wussow F, Arvin AM, Osterrieder N: A self-excisable infectious bacterial artificial chromosome clone of varicella-zoster virus allows analysis of the essential tegument protein encoded by ORF9. J Virol 2007, 81:13200-13208.
  • [23]Che X, Reichelt M, Sommer MH, Rajamani J, Zerboni L, Arvin AM: Functions of the ORF9-to-ORF12 gene cluster in varicella-zoster virus replication and in the pathogenesis of skin infection. J Virol 2008, 82:5825-5834.
  • [24]Pasieka TJ, Lu B, Leib DA: Enhanced Pathogenesis of an Attenuated Herpes Simplex Virus for Mice Lacking Stat1. J Virol 2008, 82:6052-6055.
  • [25]Leib DA, Harrison TE, Laslo KM, Machalek MA, Moorman NJ, Virgin HW: Interferons Regulate the Phenotype of Wild-type and Mutant Herpes Simplex Viruses In Vivo. J Exp Med 1999, 189:663-672.
  • [26]Arvin AM, Moffat JF, Sommer M, Oliver S, Che X, Vleck S, Zerboni L, Ku CC: Varicella-zoster virus T cell tropism and the pathogenesis of skin infection. Curr Top Microbiol Immunol 2010, 342:189-209.
  • [27]Ku CC, Besser J, Abendroth A, Grose C, Arvin AM: Varicella-Zoster virus pathogenesis and immunobiology: new concepts emerging from investigations with the SCIDhu mouse model. J Virol 2005, 79:2651-2658.
  • [28]Huch JH, Cunningham AL, Arvin AM, Nasr N, Santegoets SJ, Slobedman E, Slobedman B, Abendroth A: Impact of varicella zoster virus on dendritic cell subsets in human skin during natural infection. J Virol 2010, 84:4060-4072.
  • [29]Morrow G, Slobedman B, Cunningham AL, Abendroth A: Varicella-zoster virus productively infects mature dendritic cells and alters their immune function. J Virol 2003, 77:4950-4959.
  • [30]Abendroth A, Morrow G, Cunningham AL, Slobedman B: Varicella-zoster virus infection of human dendritic cells and transmission to T cells: implications for virus dissemination in the host. J Virol 2001, 75:6183-6192.
  • [31]Guo Y, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M, Anguiano E, Sancho-Shimizu V, Lorenzo L, Pauwels E, et al.: Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med 2011, 208:2083-2098.
  • [32]Ku C-C, Zerboni L, Ito H, Graham BS, Wallace M, Arvin AM: Varicella-Zoster Virus Transfer to Skin by T Cells and Modulation of Viral Replication by Epidermal Cell Interferon-α. J Exp Med 2004, 200:917-925.
  • [33]Arvin AM, Kushner JH, Feldman S, Baehner RL, Hammond D, Merigan TC: Human Leukocyte Interferon for the Treatment of Varicella in Children with Cancer. N Engl J Med 1982, 306:761-765.
  • [34]Baskin H, Ellermann-Eriksen S, Lovmand J, Mogensen SC: Herpes simplex virus type 2 synergizes with interferon-gamma in the induction of nitric oxide production in mouse macrophages through autocrine secretion of tumour necrosis factor-alpha. J Gen Virol 1997, 78:195-203.
  • [35]Kodukula P, Liu T, Rooijen NV, Jager MJ, Hendricks RL: Macrophage Control of Herpes Simplex Virus Type 1 Replication in the Peripheral Nervous System. J Immunol 1999, 162:2895-2905.
  • [36]Reichelt M, Wang L, Sommer M, Perrino J, Nour AM, Sen N, Baiker A, Zerboni L, Arvin AM: Entrapment of Viral Capsids in Nuclear PML Cages Is an Intrinsic Antiviral Host Defense against Varicella-Zoster Virus. PLoS Pathog 2011, 7:e1001266.
  • [37]Allan RS, Smith CM, Belz GT, van Lint AL, Wakim LM, Heath WR, Carbone FR: Epidermal Viral Immunity Induced by CD8{Abendroth, #49}+Dendritic Cells But Not by Langerhans Cells. Science 2003, 301:1925-1928.
  • [38]Allan RS, Waithman J, Bedoui S, Jones CM, Villadangos JA, Zhan Y, Lew AM, Shortman K, Heath WR, Carbone FR: Migratory Dendritic Cells Transfer Antigen to a Lymph Node-Resident Dendritic Cell Population for Efficient CTL Priming. Immunity 2006, 25:153-162.
  • [39]Jirmo AC, Nagel C-H, Bohnen C, Sodeik B, Behrens GMN: Contribution of Direct and Cross-Presentation to CTL Immunity against Herpes Simplex Virus 1. J Immunol 2009, 182:283-292.
  • [40]Smith CM, Belz GT, Wilson NS, Villadangos JA, Shortman K, Carbone FR, Heath WR: Cutting Edge: Conventional CD8α + Dendritic Cells Are Preferentially Involved in CTL Priming After Footpad Infection with Herpes Simplex Virus-1. J Immunol 2003, 170:4437-4440.
  • [41]Lee HK, Zamora M, Linehan MM, Iijima N, Gonzalez D, Haberman A, Iwasaki A: Differential roles of migratory and resident DCs in T cell priming after mucosal or skin HSV-1 infection. J Exp Med 2009, 206:359-370.
  • [42]Sprecher E, Becker Y: Langerhans cell density and activity in mouse skin and lymph nodes affect herpes simplex type 1 (HSV-1) pathogenicity. Arch Virol 1989, 107:191-205.
  • [43]Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG: Entry of Alphaherpesviruses Mediated by Poliovirus Receptor-Related Protein 1 and Poliovirus Receptor. Science 1998, 280:1618-1620.
  • [44]Montgomery RI, Warner MS, Lum BJ, Spear PG: Herpes Simplex Virus-1 Entry into Cells Mediated by a Novel Member of the TNF/NGF Receptor Family. Cell 1996, 87:427-436.
  • [45]Chiu YG, Bowers WJ, Lim ST, Ryan DA, Federoff HJ: Effects of Herpes Simplex Virus Amplicon Transduction on Murine Dendritic Cells. Hum Gene Ther 2009, 20:442-452.
  • [46]Mikloska Z, Bosnjak L, Cunningham AL: Immature Monocyte-Derived Dendritic Cells Are Productively Infected with Herpes Simplex Virus Type 1. J Virol 2001, 75:5958-5964.
  • [47]Kruse M, Rosorius O, Kratzer F, Stelz G, Kuhnt C, Schuler G, Hauber J, Steinkasserer A: Mature Dendritic Cells Infected with Herpes Simplex Virus Type 1 Exhibit Inhibited T-Cell Stimulatory Capacity. J Virol 2000, 74:7127-7136.
  • [48]Morrow G, Slobedman B, Cunningham AL, Abendroth A: Varicella-Zoster Virus Productively Infects Mature Dendritic Cells and Alters Their Immune Function. J Virol 2003, 77:4950-4959.
  • [49]Rajasagi NK, Kassim SH, Kollias CM, Zhao X, Chervenak R, Jennings SR: CD4+ T Cells Are Required for the Priming of CD8+ T Cells following Infection with Herpes Simplex Virus Type 1. J Virol 2009, 83:5256-5268.
  • [50]Ashley R, Wald A, Corey L: Cervical antibodies in patients with oral herpes simplex virus type 1 (HSV-1) infection: local anamnestic responses after genital HSV-2 infection. J Virol 1994, 68:5284-5286.
  • [51]Ashley R, Benedetti J, Corey L: Humoral immune response to HSV-1 and HSV-2 viral proteins in patients with primary genital herpes. J Med Virol 1985, 17:153-166.
  • [52]Russell MW, Mestecky J: Humoral immune responses to microbial infections in the genital tract. Microbes Infect 2002, 4:667-677.
  • [53]Bogger-Goren S, Baba K, Hurley P, Yabuuchi H, Takahashi M, Ogra PL: Antibody response to varicella-zoster virus after natural or vaccine-induced infection. J Infect Dis 1982, 146:260-265.
  • [54]Brunell PA, Gershon AA, Uduman SA, Steinberg S: Varicella-Zoster Immunoglobulins during Varicella, Latency, and Zoster. J Infect Dis 1975, 132:49-54.
  • [55]Spruance SL, Evans TG, McKeough MB, Thai L, Araneo BA, Daynes RA, Mishkin EM, Abramovitz AS: Th1/Th2-like immunity and resistance to herpes simplex labialis. Antivir Res 1995, 28:39-55.
  • [56]Koelle DM, Corey L: Herpes Simplex: Insights on Pathogenesis and Possible Vaccines. Annu Rev Med 2008, 59:381-395.
  • [57]Theil D, Derfuss T, Paripovic I, Herberger S, Meinl E, Schueler O, Strupp M, Arbusow V, Brandt T: Latent Herpesvirus Infection in Human Trigeminal Ganglia Causes Chronic Immune Response. Am J Pathol 2003, 163:2179-2184.
  • [58]Verjans GMGM, Hintzen RQ, van Dun JM, Poot A, Milikan JC, Laman JD, Langerak AW, Kinchington PR, Osterhaus ADME: Selective retention of herpes simplex virus-specific T cells in latently infected human trigeminal ganglia. Proc Natl Acad Sci 2007, 104:3496-3501.
  • [59]Zhu J, Koelle DM, Cao J, Vazquez J, Huang ML, Hladik F, Wald A, Corey L: Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J Exp Med 2007, 204:595-603.
  • [60]Verweij MC, Lipinska AD, Koppers-Lalic D, van Leeuwen WF, Cohen JI, Kinchington PR, Messaoudi I, Bienkowska-Szewczyk K, Ressing ME, Rijsewijk FAM, Wiertz EJHJ: The Capacity of UL49.5 Proteins To Inhibit TAP Is Widely Distributed among Members of the Genus Varicellovirus. J Virol 2011, 85:2351-2363.
  • [61]Eisfeld AJ, Yee MB, Erazo A, Abendroth A, Kinchington PR: Downregulation of Class I Major Histocompatibility Complex Surface Expression by Varicella-Zoster Virus Involves Open Reading Frame 66 Protein Kinase-Dependent and -Independent Mechanisms. J Virol 2007, 81:9034-9049.
  • [62]Abendroth A, Kinchington PR, Slobedman B: Varicella zoster virus immune evasion strategies. Curr Top Microbiol Immunol 2010, 342:155-171.
  • [63]Friedman HM, Cohen GH, Eisenberg RJ, Seidel CA, Cines DB: Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells. Nature 1984, 309:633-635.
  • [64]Aubert M, O’Toole J, Blaho JA: Induction and Prevention of Apoptosis in Human HEp-2 Cells by Herpes Simplex Virus Type 1. J Virol 1999, 73:10359-10370.
  • [65]Ambagala AP, Cohen JI: Varicella-Zoster virus IE63, a major viral latency protein, is required to inhibit the alpha interferon-induced antiviral response. J Virol 2007, 81:7844-7851.
  • [66]Hood C, Cunningham AL, Slobedman B, Arvin AM, Sommer MH, Kinchington PR, Abendroth A: Varicella-Zoster Virus ORF63 Inhibits Apoptosis of Primary Human Neurons. J Virol 2006, 80:1025-1031.
  • [67]Sloan E, Henriquez R, Kinchington P, Slobedman B, Abendroth A: Varicella zoster virus inhibition of the NFκB pathway during infection of human dendritic cells: role for ORF61 as a modulator of NFκB activity. J Virol 2011, 86:1193-1202.
  • [68]Azarkh Y, Gilden D, Cohrs RJ: Molecular characterization of varicella zoster virus in latently infected human ganglia: physical state and abundance of VZV DNA, Quantitation of viral transcripts and detection of VZV-specific proteins. Curr Top Microbiol Immunol 2010, 342:229-241.
  • [69]Pevenstein SR, Williams RK, McChesney D, Mont EK, Smialek JE, Straus SE: Quantitation of latent varicella-zoster virus and herpes simplex virus genomes in human trigeminal ganglia. J Virol 1999, 73:10514-10518.
  • [70]Gershon AA, Chen J, Gershon MD: A model of lytic, latent, and reactivating varicella-zoster virus infections in isolated enteric neurons. J Infect Dis 2008, 197(Suppl 2):S61-S65.
  • [71]Gary L, Gilden DH, Cohrs RJ: Epigenetic regulation of varicella-zoster virus open reading frames 62 and 63 in latently infected human trigeminal ganglia. J Virol 2006, 80:4921-4926.
  • [72]Knipe DM, Howley PM, Griffin DE: Fields’ Virology. 5th edition. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2007:2503-2577-2775-2807.
  • [73]Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR: MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 2008, 454:780-783.
  • [74]Perng G-C, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A, Slanina SM, Hofman FM, Ghiasi H, Nesburn AB, Wechsler SL: Virus-Induced Neuronal Apoptosis Blocked by the Herpes Simplex Virus Latency-Associated Transcript. Science 2000, 287:1500-1503.
  • [75]Tang S, Patel A, Krause PR: Novel Less-Abundant Viral MicroRNAs Encoded by Herpes Simplex Virus 2 Latency-Associated Transcript and Their Roles in Regulating ICP34.5 and ICP0 mRNAs. J Virol 2009, 83:1433-1442.
  • [76]Margolis TP, Imai Y, Yang L, Vallas V, Krause PR: Herpes Simplex Virus Type 2 (HSV-2) Establishes Latent Infection in a Different Population of Ganglionic Neurons than HSV-1: Role of Latency-Associated Transcripts. J Virol 2007, 81:1872-1878.
  • [77]Kramer MF, Coen DM: Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus. J Virol 1995, 69:1389-1399.
  • [78]Feldman LT, Ellison AR, Voytek CC, Yang L, Krause P, Margolis TP: Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc Natl Acad Sci 2002, 99:978-983.
  • [79]Liu T, Khanna KM, Chen X, Fink DJ, Hendricks RL: Cd8+ T Cells Can Block Herpes Simplex Virus Type 1 (HSV-1) Reactivation from Latency in Sensory Neurons. J Exp Med 2000, 191:1459-1466.
  • [80]Khanna KM, Bonneau RH, Kinchington PR, Hendricks RL: Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 2003, 18:593-603.
  • [81]St. Leger AJ, Peters B, Sidney J, Sette A, Hendricks RL: Defining the Herpes Simplex Virus-Specific CD8+ T Cell Repertoire in C57BL/6 Mice. J Immunol 2011, 186:3927-3933.
  • [82]Sheridan BS, Cherpes TL, Urban J, Kalinski P, Hendricks RL: Reevaluating the CD8 T-Cell Response to Herpes Simplex Virus Type 1: Involvement of CD8 T Cells Reactive to Subdominant Epitopes. J Virol 2009, 83:2237-2245.
  • [83]Ramachandran S, Davoli KA, Yee MB, Hendricks RL, Kinchington PR: Delaying the Expression of Herpes Simplex Virus Type 1 Glycoprotein B (gB) to a True Late Gene Alters Neurovirulence and Inhibits the gB-CD8+ T-Cell Response in the Trigeminal Ganglion. J Virol 2010, 84:8811-8820.
  • [84]Zerboni L, Sobel RA, Ramachandran V, Rajamani J, Ruyechan W, Abendroth A, Arvin A: The expression of varicella-zoster virus immediate early regulatory protein IE63 in neurons of latently infected human sensory ganglia. J Virol 2010, 84:3421-3430.
  • [85]Gowrishankar K, Slobedman B, Cunningham AL, Miranda-Saksena M, Boadle RA, Abendroth A: Productive Varicella-Zoster Virus Infection of Cultured Intact Human Ganglia. J Virol 2007, 81:6752-6756.
  • [86]Markus A, Grigoryan S, Sloutskin A, Yee MB, Zhu H, Yang IH, Thakor NV, Sarid R, Kinchington PR, Goldstein RS: Varicella-Zoster Virus (VZV) Infection of Neurons Derived from Human Embryonic Stem Cells: Direct Demonstration of Axonal Infection, Transport of VZV, and Productive Neuronal Infection. J Virol 2011, 85:6220-6233.
  • [87]Wang K, Lau TY, Morales M, Mont EK, Straus SE: Laser-capture microdissection: refining estimates of the quantity and distribution of latent herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal Ganglia at the single-cell level. J Virol 2005, 79:14079-14087.
  • [88]Cohrs RJ, Barbour M, Gilden DH: Varicella-zoster virus (VZV) transcription during latency in human ganglia: detection of transcripts mapping to genes 21, 29, 62, and 63 in a cDNA library enriched for VZV RNA. J Virol 1996, 70:2789-2796.
  • [89]Lungu O, Annunziato PW, Gershon A, Staugaitis SM, Josefson D, LaRussa P, Silverstein SJ: Reactivated and latent varicella-zoster virus in human dorsal root ganglia. Proc Natl Acad Sci U S A 1995, 92:10980-10984.
  • [90]Cohen JI, Krogmann T, Bontems S, Sadzot-Delvaux C, Pesnicak L: Regions of the varicella-zoster virus open reading frame 63 latency-associated protein important for replication in vitro are also critical for efficient establishment of latency. J Virol 2005, 79:5069-5077.
  • [91]Cohen JI, Krogmann T, Pesnicak L, Ali MA: Absence or overexpression of the Varicella-Zoster Virus (VZV) ORF29 latency-associated protein impairs late gene expression and reduces VZV latency in a rodent model. J Virol 2007, 81:1586-1591.
  • [92]Cohen JI, Krogmann T, Ross JP, Pesnicak L, Prikhod’ko EA: Varicella-zoster virus ORF4 latency-associated protein is important for establishment of latency. J Virol 2005, 79:6969-6975.
  • [93]Cohrs RJ, Barbour MB, Mahalingam R, Wellish M, Gilden DH: Varicella-zoster virus (VZV) transcription during latency in human ganglia: prevalence of VZV gene 21 transcripts in latently infected human ganglia. J Virol 1995, 69:2674-2678.
  • [94]Hoover SE, Cohrs RJ, Rangel ZG, Gilden DH, Munson P, Cohen JI: Downregulation of varicella-zoster virus (VZV) immediate-early ORF62 transcription by VZV ORF63 correlates with virus replication in vitro and with latency. J Virol 2006, 80:3459-3468.
  • [95]Lungu O, Panagiotidis CA, Annunziato PW, Gershon AA, Silverstein SJ: Aberrant intracellular localization of Varicella-Zoster virus regulatory proteins during latency. Proc Natl Acad Sci U S A 1998, 95:7080-7085.
  • [96]Mahalingam R, Wellish M, Cohrs R, Debrus S, Piette J, Rentier B, Gilden DH: Expression of protein encoded by varicella-zoster virus open reading frame 63 in latently infected human ganglionic neurons. Proc Natl Acad Sci U S A 1996, 93:2122-2124.
  • [97]Sadzot-Delvaux C, Arvin AM, Rentier B: Varicella-zoster virus IE63, a virion component expressed during latency and acute infection, elicits humoral and cellular immunity. J Infect Dis 1998, 178(Suppl 1):S43-S47.
  • [98]Xia D, Srinivas S, Sato H, Pesnicak L, Straus SE, Cohen JI: Varicella-zoster virus open reading frame 21, which is expressed during latency, is essential for virus replication but dispensable for establishment of latency. J Virol 2003, 77:1211-1218.
  • [99]Cohrs RJ, Gilden DH: Prevalence and abundance of latently transcribed varicella-zoster virus genes in human ganglia. J Virol 2007, 81:2950-2956.
  • [100]Ambagala AP, Bosma T, Ali MA, Poustovoitov M, Chen JJ, Gershon MD, Adams PD, Cohen JI: Varicella-zoster virus immediate-early 63 protein interacts with human antisilencing function 1 protein and alters its ability to bind histones h3.1 and h3.3. J Virol 2009, 83:200-209.
  • [101]Di Valentin E, Bontems S, Habran L, Jolois O, Markine-Goriaynoff N, Vanderplasschen A, Sadzot-Delvaux C, Piette J: Varicella-zoster virus IE63 protein represses the basal transcription machinery by disorganizing the pre-initiation complex. Biol Chem 2005, 386:255-267.
  • [102]Walters MS, Kyratsous CA, Wan S, Silverstein S: Nuclear import of the varicella-zoster virus latency-associated protein ORF63 in primary neurons requires expression of the lytic protein ORF61 and occurs in a proteasome-dependent manner. J Virol 2008, 82:8673-8686.
  • [103]Stallings CL, Duigou GJ, Gershon AA, Gershon MD, Silverstein SJ: The cellular localization pattern of Varicella-Zoster virus ORF29p is influenced by proteasome-mediated degradation. J Virol 2006, 80:1497-1512.
  • [104]Stallings CL, Silverstein SJ: Posttranslational modification and cell type-specific degradation of varicella-zoster virus ORF29p. J Virol 2006, 80:10836-10846.
  • [105]Farnsworth A, Goldsmith K, Johnson DC: Herpes Simplex Virus Glycoproteins gD and gE/gI Serve Essential but Redundant Functions during Acquisition of the Virion Envelope in the Cytoplasm. J Virol 2003, 77:8481-8494.
  • [106]Johnson DC, Spear PG: Monensin inhibits the processing of herpes simplex virus glycoproteins, their transport to the cell surface, and the egress of virions from infected cells. J Virol 1982, 43:1102-1112.
  • [107]Cohrs RJ, Mehta SK, Schmid DS, Gilden DH, Pierson DL: Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. J Med Virol 2008, 80:1116-1122.
  • [108]Gilden D, Cohrs RJ, Mahalingam R, Nagel MA: Neurological disease produced by varicella zoster virus reactivation without rash. Curr Top Microbiol Immunol 2010, 342:243-253.
  • [109]Freeman ML, Sheridan BS, Bonneau RH, Hendricks RL: Psychological Stress Compromises CD8+ T Cell Control of Latent Herpes Simplex Virus Type 1 Infections. J Immunol 2007, 179:322-328.
  • [110]Cherpes TL, Busch JL, Sheridan BS, Harvey SAK, Hendricks RL: Medroxyprogesterone Acetate Inhibits CD8+ T Cell Viral-Specific Effector Function and Induces Herpes Simplex Virus Type 1 Reactivation. J Immunol 2008, 181:969-975.
  • [111]Decman V, Kinchington PR, Harvey SAK, Hendricks RL: Gamma Interferon Can Block Herpes Simplex Virus Type 1 Reactivation from Latency, Even in the Presence of Late Gene Expression. J Virol 2005, 79:10339-10347.
  • [112]Knickelbein JE, Khanna KM, Yee MB, Baty CJ, Kinchington PR, Hendricks RL: Noncytotoxic Lytic Granule-Mediated CD8+ T Cell Inhibition of HSV-1 Reactivation from Neuronal Latency. Science 2008, 322:268-271.
  • [113]Jiang X, Chentoufi AA, Hsiang C, Carpenter D, Osorio N, BenMohamed L, Fraser NW, Jones C, Wechsler SL: The Herpes Simplex Virus Type 1 Latency-Associated Transcript Can Protect Neuron-Derived C1300 and Neuro2A Cells from Granzyme B-Induced Apoptosis and CD8 T-Cell Killing. J Virol 2011, 85:2325-2332.
  • [114]Himmelein S, St Leger A, Knickelbein J, Rowe A, Freeman M, Hendricks R: Circulating herpes simplex type 1 (HSV-1)-specific CD8+ T cells do not access HSV-1 latently infected trigeminal ganglia. Herpesviridae 2011, 2:5. BioMed Central Full Text
  • [115]Chapman RS, Cross KW, Fleming DM: The incidence of shingles and its implications for vaccination policy. Vaccine 2003, 21:2541-2547.
  • [116]Camarena V, Kobayashi M, Kim JY, Roehm P, Perez R, Gardner J, Wilson AC, Mohr I, Chao MV: Nature and Duration of Growth Factor Signaling through Receptor Tyrosine Kinases Regulates HSV-1 Latency in Neurons. Cell Host Microbe 2010, 8:320-330.
  • [117]Whitlow ZW, Kristie TM: Recruitment of the Transcriptional Coactivator HCF-1 to Viral Immediate-Early Promoters during Initiation of Reactivation from Latency of Herpes Simplex Virus Type 1. J Virol 2009, 83:9591-9595.
  • [118]Roxas M: Herpes zoster and postherpetic neuralgia: diagnosis and therapeutic considerations. Altern Med Rev 2006, 11:102-113.
  • [119]Gowrishankar K, Steain M, Cunningham AL, Rodriguez M, Blumbergs P, Slobedman B, Abendroth A: Characterization of the Host Immune Response in Human Ganglia after Herpes Zoster. J Virol 2010, 84:8861-8870.
  • [120]Hasnie FS, Breuer J, Parker S, Wallace V, Blackbeard J, Lever I, Kinchington PR, Dickenson AH, Pheby T, Rice AS: Further characterization of a rat model of varicella zoster virus-associated pain: Relationship between mechanical hypersensitivity and anxiety-related behavior, and the influence of analgesic drugs. Neuroscience 2007, 144:1495-1508.
  • [121]Garry EM, Delaney A, Anderson HA, Sirinathsinghji EC, Clapp RH, Martin WJ, Kinchington PR, Krah DL, Abbadie C, Fleetwood-Walker SM: Varicella zoster virus induces neuropathic changes in rat dorsal root ganglia and behavioral reflex sensitisation that is attenuated by gabapentin or sodium channel blocking drugs. Pain 2005, 118:97-111.
  • [122]Gebhardt T, Whitney PG, Zaid A, Mackay LK, Brooks AG, Heath WR, Carbone FR, Mueller SN: Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 2011, 477:216-219.
  • [123]Zerboni L, Sobel RA, Lai M, Triglia R, Steain M, Abendroth A, Arvin A: Apparent expression of varicella-zoster virus proteins in latency resulting from reactivity of murine and rabbit antibodies with human blood group a determinants in sensory neurons. J Virol 2012, 86(1):578-583.
  • [124]Ouwendijk WJ, Choe A, Nagel MA, Gilden D, Osterhaus AD, Cohrs RJ, Verjans GM: Restricted varicella-zoster virus transcription in human trigeminal Ganglia obtained soon after death. J Virol 2012 Sept, 86(81):10203-10206.
  文献评价指标  
  下载次数:2次 浏览次数:5次